Intel - EP2AGX260FF35C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	10260
Number of Logic Elements/Cells	244188
Total RAM Bits	12038144
Number of I/O	612
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx260ff35c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
+	Power Supply Ramp time	Normal POR	0.05	_	100	ms
^L RAMP		Fast POR	0.05	—	4	ms

Table 1-5.	Recommended	Operating	Conditions	for Arria II G	X Devices	(Note 1)	(Part 2 of 2)
------------	-------------	-----------	------------	----------------	-----------	----------	---------------

Notes to Table 1–5:

(1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.

(2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .

(4) V_{CCI0} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1–6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
VI (2)	I/O pre-driver (3.0 V) power supply	—	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	—	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	_	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.3	V
VI	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	—	0.05/0.075	20/25(4)	2 15/0 605	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.00/2.375	3.0/2.3 (4)	3.13/2.023	v
V _{CCHIP_L}	Transceiver HIP digital power (left side)	—	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	—	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	-	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	-	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	-	1.05	1.1	1.15	V

Table 1–30 lists the HSTL I/O standards for Arria II GX devices.

1/0 Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2	—	0.85	—	0.95	0.88	_	0.95	0.4	—
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	—	0.71	_	0.79	0.71	_	0.79	0.4	—
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	_	_	0.5 × V _{CCIO}	_	0.48 × V _{CCI0}	0.5 × V _{CCIO}	0.52× V _{CCIO}	0.3	_

Table 1–30. Differential HSTL I/O Standards for Arria II GX Devices

Table 1–31 lists the HSTL I/O standards for Arria II GZ devices.

Table 1–31. Differential HSTL I/O Standards for Arria II GZ Devices

1/0 Stondard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)				V _{DIF(AC)} (V)			
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2		0.78	-	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68	—	0.9	0.68		0.9	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5 × V _{CCIO}		0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.3	V _{CCI0} + 0.48

Table 1–32 lists the differential I/O standard specifications for Arria II GX devices.

Table 1–32. Differential I/O Standard Specifications for Arria II GX Devices (Note 1)

I/O	V _{ccio} (V)			V _{ID} (mV)			V _{ICM} (V) <i>(2)</i>		V _{0D} (V) <i>(3)</i>			V _{OCM} (V)		
Standard	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.80	0.247	_	0.6	1.125	1.25	1.375
RSDS (4)	2.375	2.5	2.625	_		_	_	—	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (4)	2.375	2.5	2.625	_	_	_	_	_	0.25	_	0.6	1	1.2	1.4
LVPECL (5)	2.375	2.5	2.625	300	_		0.6	1.8	_	_	_	-	_	_
BLVDS (6)	2.375	2.5	2.625	100				—			_	—		

Notes to Table 1-32:

(1) The 1.5 V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.

(2) V_{IN} range: 0 <= V_{IN} <= 1.85 V.

(3) R_L range: 90 <= RL <= 110 Ω .

- (4) The RSDS and mini-LVDS I/O standards are only supported for differential outputs.
- (5) The LVPECL input standard is supported at the dedicated clock input pins (GCLK) only.
- (6) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Switching	Chapter 1
Characteris	: Device D:
stics	atasheet fo
	r Arria II
	Device

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0	13			C4			C5 and I5			C6			
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to -0.5%	_	_	0 to -0.5%		_	0 to 0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	_	100	_	_	100		Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	5%		1100 ± 59	6		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	—	—	-50	—	—	-50	—	—	-50	—	—	-50	dBc/Hz
	100 Hz	—	—	-80	—	—	-80	—	—	-80	—	—	-80	dBc/Hz
Transmitter	1 KHz	—	_	-110	_	—	-110	—	—	-110	_	_	-110	dBc/Hz
Noise	10 KHz	—	—	-120	—	—	-120	—	—	-120	_	—	-120	dBc/Hz
	100 KHz	—	—	-120	—	—	-120	—	—	-120	_	—	-120	dBc/Hz
	≥ 1 MHz	—	—	-130	—	—	-130	—	—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3			3	_	_	3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%		_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000± 1%	_	Ω
Transceiver Clock	(S													
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/	Condition	I3 C4 C5 and I5								llait				
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Digital reset pulse width	_			-		М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1–34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Table 1-35. Italiscelvel specifications for Afria it uz Devices (Part 1 of 5)	Table 1–35.	Transceiver Specifications	for Arria II GZ Devices	(Part 1 of 5)
---	-------------	----------------------------	-------------------------	---------------

Symbol/		-	C3 and –I3	; (1)				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LV	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	_	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50		325	MHz
Absolute V_{MAX} for a \texttt{REFCLK} pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a ${\tt REFCLK}$ pin	_	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)	—			0.2	_		0.2	UI
Duty cycle	—	45		55	45		55	%
Peak-to-peak differential input voltage	—	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCIe	_	0 to -0.5%	_	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)			1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz			-50	_	_	-50	dBc/Hz
	100 Hz			-80	_		-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz		_	-110	_		-110	dBc/Hz
Noise	10 KHz			-120			-120	dBc/Hz
	100 KHz		—	-120			-120	dBc/Hz
	≥ 1 MHz		—	-130			-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK (3)	10 KHz to 20 MHz	_	_	3		_	3	ps
R _{REF}			2000 ± 1%	_	_	2000 ± 1%		Ω

Symbol/	0	-	-C3 and -I3 <i>(1)</i> -C4 a		-C4 and -	-14		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transceiver Clocks								
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	MHz
reconfig_clk ClOCk frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μs
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCM	IL, 2.5-V PC	ML, LVPE	CL, and L\	/DS	
Data rate (16)	—	600	_	6375	600	—	3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	—	_	—	1.6	_	—	1.6	V
Operational V _{MAX} for a receiver pin	_	_	—	1.5	_	—	1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting	_		2.7	_		2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	—	1.6	_	—	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins (8) Data	Data Rate > 5 Gbps Equalization = 0 DC gain = 0 dB	165	_	_	165	_	_	mV
Var	V _{ICM} = 0.82 V setting		820 ± 10 ⁰	%		820 ± 10 ⁰	%	mV
I VICM	$V_{ICM} = \overline{1.1 \text{ V} \text{ setting}}$		1100 ± 10	%		1100 ± 10	%	mV

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Figure 1–3 shows the differential receiver input waveform.

Figure 1–4 shows the transmitter output waveform.

Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1-36.	Typical V _{nn} Setting	j, TX Term = 85 Ω	for Arria II GZ Devices
-------------	---------------------------------	--------------------------	-------------------------

Sumbol		V _{OD} Setting (mV)											
Symbol	0	1	2	3	4	5	6	7					
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%					

Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX		Ar	ria II GX (Quartu	s II Software) V	OD Setting		
(Quartus II Software) First Post Tap Setting	1	2	4	5	6	7	Unit
0 (off)	0	0	0	0	0	0	—
1	0.7	0	0	0	0	0	dB
2	2.7	1.2	0.3	0	0	0	dB
3	4.9	2.4	1.2	0.8	0.5	0.2	dB
4	7.5	3.8	2.1	1.6	1.2	0.6	dB
5	_	5.3	3.1	2.4	1.8	1.1	dB
6		7	4.3	3.3	2.7	1.7	dB

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Pre-				V _{od} S	etting			
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Symbol/			13			C4			C5, I	C5, I5 C6						
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit		
PCIe Receiver Jitt	er Tolerance <i>(4)</i>	•														
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	6		> 0.6	;		> 0.6	;	UI		
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)													
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65		175	65		175	65		175	65		175	mV		
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5</i> ,)												
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = C IPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI		
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT			0.35		_	0.35	_	_	0.35	_		0.35	UI		
SRIO Receiver Jitt	er Tolerance <i>(5)</i>								•							
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.3	7		> 0.3	7		> 0.3	7	UI		
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55		> 0.55			> 0.55			> 0.55			UI		
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps		> 8.5		> 8.5 > 8.5		> 8.5				> 8.5	;	UI			
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1		> 0.1			> 0.1			> 0.1		> 0.1 > 0.1			UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1	0.1		> 0.1		> 0.1 > 0.1 > 0.1		> 0.1			UI			
GIGE Transmit Jitt	er Generation <i>(6)</i>															
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14		_	0.14	_	_	0.14	_	_	0.14	UI		

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/	Conditiono		13			C4			C5, IS	i			Ilmit		
Description	Conultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII	
OBSAI Receiver Ji	tter Tolerance (12)														
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37	7		> 0.37	7	> 0.37			UI	
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55	5 > 0.55 > 0.55					5		UI				
	Jitter frequency = 5.4 KHz	> 8.5			> 8.5				> 8.5		> 8.5			UI	
Sinusoidal jitter	Pattern = CJPAT														
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz	> 0.1				> 0.1			> 0.1			> 0.1		UI	
	Pattern = CJPAI														
	10.9 KHz		> 8.5		> 8.5		> 8.5 > 8.5 > 8.5 > 8		> 8.5		> 8.5		> 8.5		UI
Sinusoidal jitter	jitter Pattern = CJPAT														
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1		> 0.1		> 0.1		> 0.1			UI			
	Pattern = CJPAT														

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	Conditions	13			C4		C5, I5			C6			Ilnit	
Description	Conultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 21.8 KHz	> 8.5				> 8.5			> 8.5			> 8.5		
Sinusoidal jitter tolerance at 3072 MbpsPattern = CJPATJitter frequency = 1843.2 KHz to 20 MHz> 0.1> 0.1> 0.1Pattern = CJPAT> 0.1> 0.1> 0.1														
	Jitter frequency = 1843.2 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 10 of 10)

Notes to Table 1-40:

(1) Dedicated refelk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.

(2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.

(3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.

(4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.

(5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.

(6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

(7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.

(9) Arria II PCIe receivers are compliant to this specification provided the VTX_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.

(10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.

(11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.

(12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1–41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

Symbol/ Decorintion	Conditiono		-C3 and	-13	-	11			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
SONET/SDH Transmit Jitter Gener	ration <i>(3)</i>								
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI	
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.01	_	_	0.01	UI	
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI	
RMS jitter at 2488.32 Mbps	Pattern = PRBS15	—		0.01	—		0.01	UI	
SONET/SDH Receiver Jitter Tolera	ance <i>(3)</i>								
	Jitter frequency = 0.03 KHz		× 15			× 15			
	Pattern = PRBS15		> 10			> 10		01	
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5			> 1.5		UI	
	Pattern = PRBS15								
	Jitter frequency = 250 KHz		<u>∖</u> 015			× 0.15			
	Pattern = PRBS15		> 0.15						

1-46

Symbol/	Symbol/C3 and _I3	-	-C4 and	-14	11			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance ((11)							
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	i		UI		
HiGig Transmit Jitter Generation								
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_		UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_	_	UI
HiGig Receiver Jitter Tolerance				1				
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	> 0.65			_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_		_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_		_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_	_	0.3	_	_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce	•			•			
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.675			_		-	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.988	8	_	_	_	UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Dandikiana		-C3 and ·	-13	-	Unit		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Jitter Tolerance	(15)							
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37		UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.55		UI
	Jitter frequency = 5.4 KHz	> 8 5				111		
Sinusoidal jitter tolerance at 768	Pattern = CJPAT		20.0			20.0		01
Mbps	Jitter frequency = 460 MHz to 20 MHz		> 0.1			> 0.1		UI
	Pattern = CJPAT							
Sinunoidal iittar talaranaa at	Jitter frequency = 10.9 KHz Pattern = CJPAT		> 8.5		> 8.5			UI
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = C.IPAT		> 0.1			> 0.1		UI
	litter frequency = 21 8 KHz							
Sinusoidal iitter tolerance at	Pattern = CJPAT	> 8.5			> 8.5			UI
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	equency = 1843.2 MHz to 20 MHz > 0.1 > 0.1 Pattern = CJPAT			UI			

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Cumhal	Conditiono	13		C4		C5,I5		C6		Unit
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Clock										
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

Cumhal	Conditions		C3, I3					
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 <i>(7)</i>	5	_	717 <i>(7)</i>	MHz
Transmitter								
	SERDES factor, J = 3 to 10 (using dedicated SERDES) (8)	(4)	_	1250	(4)	_	1250	Mbps
output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) <i>(5)</i>	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160		_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300		_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2		_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
tduty	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

0	0		C3, I3						
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Max	Unit	
	True differential I/O standards	_	_	200	_	—	200	ps	
t _{rise &} t _{fall}	Emulated differential I/O standards with three external output resistor networks			250		_	300	ps	
	Emulated differential I/O standards with one external output resistor	_	_	500	_		500	ps	
	True LVDS			100			100	ps	
TCCS	Emulated LVDS_E_3R	—	_	250	_	_	250	ps	
Receiver				•			•		
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps	
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps	
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)	_	(5)	Mbps	
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps	
DPA run length	DPA mode	_	—	10000		—	10000	UI	
Soft-CDR PPM tolerance	Soft-CDR mode	_	_	300	_	_	300	± PPM	
Sampling Window (SW)	Non-DPA mode	_	_	300	_	_	300	ps	

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Notes to Table 1-54:

(1) When J = 3 to 10, use the SERDES block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.

- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1-55 lists DPA lock time specifications for Arria II GX and GZ devices.

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1-66.	IOE Programmable	Delay for Arria II GX Devices
-------------	-------------------------	-------------------------------

	Available	Minimum Offset <i>(2)</i>	Maximum Offset								
Parameter	Settings		Fast Model			Slow Model					Unit
	(1)		13	C4	15	13	C4	C5	15	C6	1
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

(1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.

(2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67	lists the IOE	programmable	delay settings	for Arria I	I GZ devices.
		0	/ · · · / / · · · / / / / / / / / / / /		

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

Available Parameter Settings			Maximum Offset							
		Minimum Offset <i>(2</i>)	Fast		Unit					
	(1)		Industrial	Commercial	C3	13	C4	14		
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns	
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns	
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns	
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns	
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns	
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns	

Notes to Table 1-67:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.

(2) Minimum offset does not include the intrinsic delay.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Letter	Subject	Definitions						
	SW (sampling window)	The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: Timing Diagram Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS RSKM						
S	Single-ended Voltage Referenced I/O Standard	The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the AC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard						
	t _C	High-speed receiver and transmitter input and output clock period.						
	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).						
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.						
Т	t _{DUTY}	The timing budget allowed for skew, propagation delays, and data sampling window. $(TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w$						
	t _{FALL}	Signal high-to-low transition time (80-20%)						
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.						
	t _{outpj 10}	Period jitter on the general purpose I/O driven by a PLL.						
	t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL.						
	t _{RISE}	Signal low-to-high transition time (20-80%).						

 Table 1–68. Glossary (Part 3 of 4)