
Intel - EP2AGX260FF35C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	10260
Number of Logic Elements/Cells	244188
Total RAM Bits	12038144
Number of I/O	612
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx260ff35c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Arria II GX and GZ devices. All supplies are required to monotonically reach their full-rail values without plateaus within t_{RAMP} .

Table 1–5 lists the recommended operating conditions for Arria II GX devices.

Table 1–5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS		0.87	0.90	0.93	V
V _{CCCB}	Supplies power to the configuration RAM bits	_	1.425	1.50	1.575	V
V _{CCBAT} (2)	Battery back-up power supply for design security volatile key registers	_	1.2		3.3	V
	Supplies power to the I/O pre-drivers,		3.135	3.3	3.465	V
V _{CCPD} (3)	differential input buffers, and MSEL		2.85	3.0	3.15	V
cir	circuitry		2.375	2.5	2.625	V
		_	3.135	3.3	3.465	V
V _{CCIO}		_	2.85	3.0	3.15	V
	Supplies power to the I/O banks (4)	_	2.375	2.5	2.625	V
			1.71	1.8	1.89	V
			1.425	1.5	1.575	V
			1.14	1.2	1.26	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	_	0.87	0.90	0.93	V
V _{cca_pll}	Supplies power to the analog portions of the PLL and device-wide power management circuitry		2.375	2.5	2.625	V
VI	DC Input voltage	_	-0.5		3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
V _{CCA}	Supplies power to the transceiver PMA regulator		2.375	2.5	2.625	V
V _{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking		1.045	1.1	1.155	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.425	1.5	1.575	V
TJ	Operating junction temperature	Commercial	0		85	°C
IJ		Industrial	-40		100	°C

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit	
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V	
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V	
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1.4/1.5 <i>(5)</i>	1.575	V	
V _{CCH_GXBRn} (3)	Transmitter output buffer power (right side)	_	1.33/1.423	1.4/1.5 (5)	1.575	V	
т	Operating junction temperature	Commercial	0	_	85	°C	
TJ		Industrial	-40	_	100	°C	
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	—	100	ms	
t _{RAMP}		Fast POR (PORSEL=1)	0.05	_	4	ms	

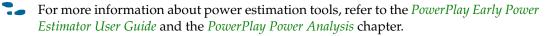
Notes to Table 1-6:

 Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(2) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(3) n = 0, 1, or 2.

(4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.


- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	рF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$C_{CLK1},C_{CLK3},C_{CLK8},$ and C_{CLK10}	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2)	7	28	47	kΩ
P	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2)	8	35	61	kΩ
	programmable pull-up resistor	V _{CCI0} = 1.8 V ±5% (2)	10	57	108	kΩ
	option is enabled.	V _{CCI0} = 1.5 V ±5% (2)	13	82	163	kΩ
		V _{CCI0} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$	6	19	29	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$	6	25	42	kΩ
		V _{CCI0} = 1.8 V ±5%	7	35	70	kΩ
		V _{CCI0} = 1.5 V ±5%	8	50	112	kΩ

Notes to Table 1–18:

(1) All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

(2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

I/O V _{CCIO} (V)		/)		V _{ID} (mV)		V _{ICM(I}	_{nc)} (V)	Vo	_D (V) <i>(</i>	3)	V _{OCM} (V) <i>(3)</i>			
Standard <i>(2)</i>			Min	Max	Min	Тур	Max	Min	Тур	Max				
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5
Mini-LVDS (HIO)	2.375	2.5	2.625	200	_	600	0.4	1.32 5	0.25	_	0.6	1	1.2	1.4
Mini-LVDS (VIO)	2.375	2.5	2.625	200	_	600	0.4	1.32 5	0.25	_	0.6	1	1.2	1.5
LVPECL	2.375	2.5	2.625	300	—	_	0.6	1.8	—	—	—	—	—	—
BLVDS (4)	2.375	2.5	2.625	100			_							

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

Notes to Table 1-33:

(1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.

(2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.

(3) R_L range: $90 \le RL \le 110 \Omega$.

(4) There are no fixed V_{ICM}, V_{oD}, and V_{oCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Ś	Ω
Switching Characteristics	hapter 1: Device Datasheet for Arria II Devices
hin	ter
дC	
hai	Be
act	٧ic
eri	6
stic	ata
S	she
	ĕt
	đ
	Ar
	ria
	Ξ
	Dev
	ic
	22

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4			C5 and I5	i		C6		Unit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to 0.5%	_	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100			100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	0		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	—	-50		—	-50		—	-50	_	—	-50	dBc/Hz
	100 Hz	_	—	-80	_	—	-80	—	—	-80	_	—	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	—	-110		—	-110		—	-110	_	—	-110	dBc/Hz
Noise	10 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	100 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	\geq 1 MHz	_	—	-130		—	-130		—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3	_		3	_		3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S													
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Š	ŝ
vitch	apt
iing	ıpter 1
C	••
Switching Characteristics	1: Device C
eri	e
sti	ă
S	as
	he
	et -
	Datasheet for Arria II Devices
	Þ
	Ę.
	=
	ev.
	Ĉ
	õ

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/	0		13		C4			C5 and I5			C6			
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_		_	4000	_	_	4000			4000	_	_	4000	ns
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3		_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6		_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	—	600	—	6375	600		3750	600	—	3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	—	650	_	_	650	_	_	650	—	_	650		mV
Differential on-chip termination resistors	100–Ω setting		100		_	100			100		_	100		Ω
Return loss	PCIe		1	1			50 MHz to	1.25 GHz:	-10dB					
differential mode	XAUI		312 MHz to 625 MHz: –10dB 625 MHz to 3.125 GHz: –10dB/decade slope											
Return loss common mode	PCIe						50 MHz to	1.25 GHz:	-6dB					
Rise time (2)	—	50	—	200	50		200	50	—	200	50	—	200	ps
Fall time		50		200	50	_	200	50		200	50	_	200	ps

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/	Condition		13			C4			C5 and I5	i		C6		Unit
Description	Conuncion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII
Digital reset pulse width	—			•		М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1–34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Symbol/	0 and 111 and	-	C3 and –I3	(1)		-C4 and -	14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LV	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	—	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50	_	325	MHz
Absolute V_{MAX} for a \texttt{REFCLK} pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a ${\tt REFCLK}$ pin	—	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)			—	0.2	—		0.2	UI
Duty cycle	—	45	—	55	45	—	55	%
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCle	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCIe	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100		_	100		Ω
V _{ICM} (AC coupled)			1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz		—	-50	—		-50	dBc/Hz
	100 Hz		—	-80	—	—	-80	dBc/H
Transmitter REFCLK Phase	1 KHz	—		-110	_		-110	dBc/H
Noise	10 KHz			-120	_		-120	dBc/Hz
	100 KHz			-120			-120	dBc/Hz
	≥ 1 MHz	—		-130			-130	dBc/H
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz		_	3			3	ps
R _{REF}	_		2000 ± 1%		_	2000 ± 1%	_	Ω

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

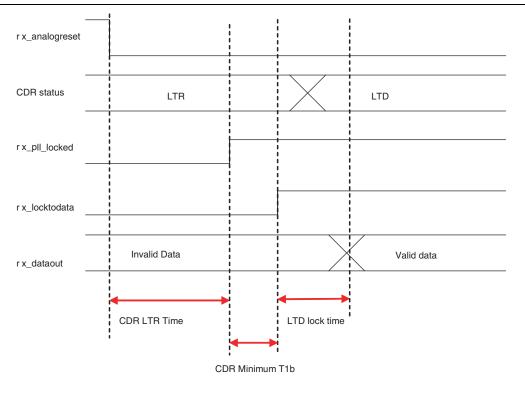
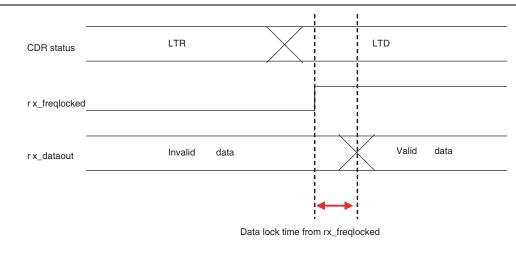



Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

Symbol/	0		13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		> 15			> 15			> 15			> 15		UI
	Pattern = PRBS15													
	Jitter frequency = 100 KHZ		> 1.5			> 1.5	5		> 1.5			> 1.5	5	UI
Jitter tolerance at	Pattern = PRBS15													
2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.1	5		> 0.1	5		> 0.1	5	UI
	Pattern = PRBS15													
	Jitter frequency = 10 MHz		> 0.15			> 0.1	5		> 0.1	5		> 0.1	5	UI
	Pattern = PRBS15													
XAUI Transmit Jitt	er Generation <i>(3)</i>													
Total jitter at 3.125 Gbps	Pattern = CJPAT		_	0.3	_		0.3	_	_	0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT			0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>													
Total jitter			> 0.65			> 0.6	5		> 0.6	5		> 0.6	5	UI
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	;		> 8.5			> 8.5	;	UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
PCIe Transmit Jitt	er Generation <i>(4)</i>													
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		_	0.25	_		0.25	_		0.25			0.25	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

	eiver Block Jitter S						1	, (00		
Symbol/ Description	Conditions		13	1		C4			C5, I			C6		Unit
-		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Total jitter (peak-to-peak)	Pattern = CRPAT	_	—	0.27 9		_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitt	er Tolerance <i>(6)</i>													
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4	ļ		> 0.4			> 0.4	ļ	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66			> 0.6	6		> 0.6	6		> 0.6	6	UI
HiGig Transmit Jit	ter Generation (7)													
Deterministic jitter	Data rate = 3.75 Gbps	_	_	0.17	_	_	0.17	_	_	_	_			UI
(peak-to-peak)	Pattern = CJPAT													
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps	_	_	0.35	_	_	0.35	_	_	_	_	_	_	UI
	Pattern = CJPAT													
HiGig Receiver Jit								1			1			1
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37			> 0.3	7	_	_	—	_	—	—	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65			> 0.6	5			_				UI
	Jitter frequency = 22.1 KHz													
	Data rate = 3.75 Gbps		> 8.5			> 8.5	5	_	_	—	_	_	—	UI
	Pattern = CJPAT													
Sinusoidal jitter	Jitter frequency = 1.875MHz													
tolerance (peak-to-peak)	Data rate = 3.75 Gbps		> 0.1			> 0.1		_		_	_	_	_	UI
	Pattern = CJPAT													
	Jitter frequency = 20 MHz													
	Data rate = 3.75 Gbps		> 0.1			> 0.1		-	-	—	-		—	UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 4 of 10)

Symbol/	Oanditions		13			C4			C5, I	5	C6			Ilait
Description	Conditions	Min	Тур	Max	Unit									
SDI Transmitter Ji	itter Generation <i>(8)</i>			•										
Alignment jitter	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2	_	_	0.2	_	_	0.2		_	0.2		_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3	_	_	0.3	_	_	0.3	_	_	0.3		_	UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>													
	Jitter frequency = 15 KHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 2			> 2			> 2			> 2		UI
	Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3			> 0.3			> 0.3		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3			> 0.3			> 0.3		UI

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/			13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Ji	tter Tolerance (12)													
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI
	Jitter frequency = 5.4 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5	i	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	O and l'it's and		-C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)		-					
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	;		> 0.66		UI
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_		UI
HiGig Receiver Jitter Tolerance								
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65	i	_	_		UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_		0.3		_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce		•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.67	5	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.98	8	-	_		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Oendikiene		-C3 and	-13	-	-C4 and ·	-14	11 14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Jitter Tolerance	(15)							
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37		UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55	i		> 0.55		UI
Sinusoidal jitter tolerance at 768	Jitter frequency = 5.4 KHz Pattern = CJPAT		> 8.5			> 8.5		UI
Mbps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT		> 0.1			UI		
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT	> 8.5			> 8.5			UI
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		UI
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT		> 8.5			> 8.5		UI
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1			> 0.1			UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	<u> </u>	0.3	_	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	—	MHz
	PLL closed-loop high bandwidth (7)	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—		±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10		—	ns
+ (2) (1)	Input clock cycle to cycle jitter ($F_{REF} \geq 100~MHz)$	—		0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle to cycle jitter (F _{REF} < 100 MHz)	—		±750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
t _{outpj_dc} (5)	Period Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_		17.5	mUI (p-p)
L (7)	Cycle to Cycle Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
t _{outccj_dc} (5)	Cycle to Cycle Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
t _{outpj_10} <i>(5)</i> ,	Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Period Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{outccj_10} <i>(5)</i> ,	Cycle to Cycle Jitter for clock output on regular I/O $(F_{\text{OUT}} \geq 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle to Cycle Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100MHz$)	_	_	250	ps (p-p)
(5), (6)	Period Jitter for dedicated clock output in cascaded PLLs $(F_{0UT} < 100MHz)$	_	_	25	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for duration of 100 us	-	_	±10	%

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O F_{MAX} or F_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- (6) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46.	DSP Block Performance	e Specifications for	Arria II GX Devices	(Note 1)
-------------	-----------------------	----------------------	---------------------	----------

Mada	Resources Used		mance		11	
Mode	Number of Multipliers	C4	13	C5,I5	C6	– Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

(1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.

(2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Mode	Resources Used	Perfor	nance	Unit
Muue	Number of Multipliers	-3	-4	
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 × 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Frequency			Frequency Range (MHz)			Resolution	DQS Delay	Number of
Mode			C6	(°)	Buffer Mode <i>(1)</i>	Delay Chains		
5	270-410	270-380	270-320	36	High	10		
6	320-450	320-410	320-370	45	High	8		

Table 1-57	. External Memory	Interface	Specifications	for Arria II GX	Devices	(Part 2 of 2)
------------	-------------------	-----------	----------------	-----------------	---------	---------------

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Francisco Manda	Frequency I	Range (MHz)	Augilable Dhage Ohiff	DQS Delay	Number of	
Frequency Mode	-3 -4		Available Phase Shift	Buffer Mode <i>(1)</i>	Delay Chains	
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16	
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12	
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10	
3	180-260	180-240	45°, 90°,135°, 180°	Low	8	
4	240-320	240-290	30°, 60°, 90°, 120°	High	12	
5	290-380	290-360	36°, 72°, 108°, 144°	High	10	
6	360-450	360-450	45°, 90°, 135°, 180°	High	8	
7	470-630	470-590	60°, 120°, 180°, 240°	High	6	

Note to Table 1–58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1–59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)	Table 1–59	. DQS Phase Offset Dela	y Per Setting for Arria II GX Device	s (Note 1), (2),	(3)
---	------------	-------------------------	--------------------------------------	------------------	-----

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
13, C5, 15	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

(1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.

(2) The typical value equals the average of the minimum and maximum values.

(3) The delay settings are linear.

Table 1–60 lists the DQS phase shift error for Arria II GX devices.

Number of DQS Delay Buffer	C4	13, C5, 15	C6	Unit
1	26	30	36	ps
2	52	60	72	ps
3	78	90	108	ps
4	104	120	144	ps

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GX Devices (*Note 1*)

Note to Table 1-60:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61.DQS Phase Shift Error Specification for DLL-Delayed Clock (t _{DQS PSERR}) for Arria II (GZ
Devices (Note 1)	

Number of DQS Delay Buffer	-3	-4	Unit
1	28	30	ps
2	56	60	ps
3	84	90	ps
4	112	120	ps

Note to Table 1-61:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

 Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

Deremeter	Clock	Symbol	-	4	_	5	_	6	Unit
Parameter	Network	Symbol	Min	Max	Min	Max	Min	Max	UIII
Clock period jitter	Global	$t_{JIT(per)}$	-100	100	-125	125	-125	125	ps
Cycle-to-cycle period jitter	Global	$t_{JIT(cc)}$	-200	200	-250	250	-250	250	ps
Duty cycle jitter	Global	$t_{JIT(duty)}$	-100	100	-125	125	-125	125	ps

Notes to Table 1-62:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.

(3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

Letter	Subject	Definitions		
U,	V _{CM(DC)}	DC common mode input voltage.		
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.		
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.		
V,	V _{IH(AC)}	High-level AC input voltage.		
	V _{IH(DC)}	High-level DC input voltage.		
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.		
	V _{IL(AC)}	Low-level AC input voltage.		
	V _{IL(DC)}	Low-level DC input voltage.		
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.		
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.		
W,				
Х,	w	Llich around 1/0 block. The alexy boost factor		
Y,	vv	High-speed I/O block: The clock boost factor.		
Z				

Document Revision History

Table 1–69 lists the revision history for this chapter.

 Table 1–69. Document Revision History (Part 1 of 2)

Date	Version	Changes
December 2013	4.4	Updated Table 1–34 and Table 1–35.
	4.3	 Updated the V_{CCH_GXBL/R} operating conditions in Table 1–6.
July 2012		 Finalized Arria II GZ information in Table 1–20.
July 2012		 Added BLVDS specification in Table 1–32 and Table 1–33.
		 Updated input and output waveforms in Table 1–68.
December 2011	4.2	 Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		 Minor text edits.
	4.1	Added Table 1–60.
lune 0011		Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
June 2011		 Updated the "Switching Characteristics" section introduction.
		 Minor text edits.