
Intel - EP2AGX45DF25C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	1805
Number of Logic Elements/Cells	42959
Total RAM Bits	3517440
Number of I/O	252
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx45df25c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		4.0	100.000	%
		4.05	79.330	%
		4.1	46.270	%
		4.15	27.030	%
V _I (AC)	AC Input Voltage	4.2	15.800	%
		4.25	9.240	%
		4.3	5.410	%
		4.35	3.160	%
		4.4	1.850	%
		4.45	1.080	%
		4.5	0.630	%
		4.55	0.370	%
		4.6	0.220	%

 Table 1–3. Maximum Allowed Overshoot During Transitions for Arria II Devices

Maximum Allowed I/O Operating Frequency

Table 1–4 lists the maximum allowed I/O operating frequency for Arria II GX I/Os using the specified I/O standards to ensure device reliability.

I/O Standard	I/O Frequency (MHz)
HSTL-18 and HSTL-15	333
SSTL -15	400
SSTL-18	333
2.5-V LVCMOS	260
3.3-V and 3.0-V LVTTL	
3.3-V, 3.0-V, 1.8-V, and 1.5-V LVCMOS	250
PCI and PCI-X	230
SSTL-2	
1.2-V LVCMOS HSTL-12	200

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
t _{RAMP} Power	Power Supply Ramp time	Normal POR	0.05		100	ms
		Fast POR	0.05		4	ms

Notes to Table 1–5:

(1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.

(2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .

(4) V_{CCI0} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1–6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V (2)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	—	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	—	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	—	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	—	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2		3.3	V
VI	DC input voltage	_	-0.5	—	3.6	V
V ₀	Output voltage	_	0	—	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	_	0.05/0.075		0 1 5 /0 005	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.85/2.375	3.0/2.5 (4)	3.15/2.625	v
V _{CCHIP_L}	Transceiver HIP digital power (left side)	-	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	—	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	— —	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	—	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	_	1.05	1.1	1.15	V

Table 1–10 lists the bus hold specifications for Arria II GZ devices.

							V _{CCI}	o (V)					
Parameter	Symbol	Cond.	1	.2	1	.5	1	.8	2	.5	3	.0	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μA
Bus-hold High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μA
Bus-hold Low overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}	_	120	_	160	_	200	_	300	_	500	μA
Bus-hold High overdrive current	I _{odh}	OV < V _{IN} < V _{CCIO}	_	-120	_	-160	_	-200	_	-300	_	-500	μA
Bus-hold trip point	V _{TRIP}	—	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

Table 1–10. Bus Hold Parameters for Arria II GZ Devices

OCT Specifications

Table 1–11 lists the Arria II GX device and differential OCT with and without calibration accuracy.

Gumbal	Description	Conditions (1/)	Calibratio	n Accuracy	11
Symbol	Description Conditions (V)	Conditions (V)	Commercial	Industrial	Unit
25-Ω R _S 3.0, 2.5	25-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
50-Ω R _S 3.0, 2.5	50-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
25-Ω R _S 1.8	25-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
50-Ω R _S 1.8	50-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
25-Ω R _S 1.5, 1.2	25-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
50-Ω R _S 1.5, 1.2	50-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	25- Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Symbol	Description	Opendikione (U)	Resistance	Tolerance	11
	Description	Conditions (V)	C3,I3	C4,14	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/	Condition	13			C4				C5 and I5	i		Unit		
Description	Conuncion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII
Digital reset pulse width	—			•		М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1-34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Symbol/		-	C3 and –I3	(1)		-C4 and -	14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LV	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	—	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50	_	325	MHz
Absolute V_{MAX} for a \texttt{REFCLK} pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a ${\tt REFCLK}$ pin	—	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)			—	0.2	—		0.2	UI
Duty cycle	—	45	—	55	45	—	55	%
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCle	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100		_	100		Ω
V _{ICM} (AC coupled)			1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz		—	-50	—		-50	dBc/Hz
	100 Hz		—	-80	—	—	-80	dBc/H
Transmitter REFCLK Phase	1 KHz	—		-110	_		-110	dBc/H
Noise	10 KHz			-120	_		-120	dBc/Hz
	100 KHz			-120			-120	dBc/Hz
	≥ 1 MHz	—		-130			-130	dBc/H
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz		_	3			3	ps
R _{REF}	_		2000 ± 1%		_	2000 ± 1%	_	Ω

Figure 1–3 shows the differential receiver input waveform.

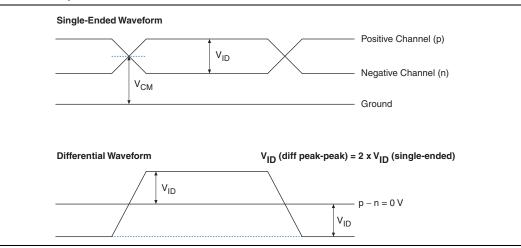


Figure 1–4 shows the transmitter output waveform.

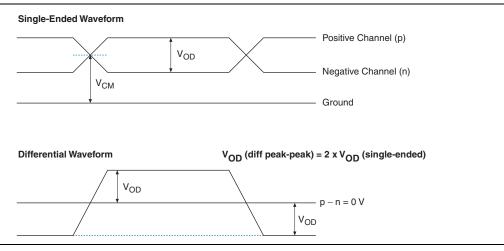


Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1–36. 1	Typical V _{on} Setting,	, TX Term = 85 Ω for Arria II GZ Dev	ices
---------------	----------------------------------	---	------

Symbol	V _{OD} Setting (mV)										
Symbol	0	1	2	3	4	5	6	7			
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%			

Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX (Quartus II		Ar	ria II GX (Quartu	is II Software) V	OD Setting		
Software) First Post Tap Setting	1	2	4	5	6	7	Unit
0 (off)	0	0	0	0	0	0	—
1	0.7	0	0	0	0	0	dB
2	2.7	1.2	0.3	0	0	0	dB
3	4.9	2.4	1.2	0.8	0.5	0.2	dB
4	7.5	3.8	2.1	1.6	1.2	0.6	dB
5	—	5.3	3.1	2.4	1.8	1.1	dB
6	_	7	4.3	3.3	2.7	1.7	dB

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Pre-		V _{OD} Setting												
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7						
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3						
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A						
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A						

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/			13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	nit Jitter Generation	<i>(2)</i>												
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15			0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.01	_	_	0.01	_	_	0.01	_	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.01	_	—	0.01	_		0.01	_	_	0.01	UI
SONET/SDH Receiv	ver Jitter Tolerance	(2)												
	Jitter frequency = 0.03 KHz		> 15			> 15			> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Pattern = PRBS15 Jitter frequency = 25 KHZ Pattern = PRBS15	= >1.5 >1.5 >1.5 >1.5		i	UI									
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15		> 0.15		> 0.15			> 0.15			UI	

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 8 of 10)											1			
Symbol/	Conditions		13		C4				C5, I	5	C6			Unit
Description	CONULIONS	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
CPRI Transmit Jitt	er Generation (11)													•
	E.6.HV, E.12.HV			0.27			0.279			0.279			0.279	UI
	Pattern = CJPAT			9			0.275			0.275			0.279	01
Total jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.35		_	0.35	_	_	0.35	_	_	0.35	UI
	Pattern = CJTPAT													
	E.6.HV, E.12.HV			0.14			0.14	_		0.14			0.14	UI
Deterministic	Pattern = CJPAT			0.14			0.14			0.14			0.14	01
jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.17		_	0.17	_	_	0.17	_	_	0.17	UI
	Pattern = CJTPAT													
CPRI Receiver Jitt	ter Tolerance (11)	•	•	•				•	•		•	•	•	•
Total jitter tolerance	E.6.HV, E.12.HV Pattern = CJPAT		> 0.66			> 0.6	6		> 0.60	6		> 0.6	6	UI
Deterministic	E.6.HV, E.12.HV													UI
jitter tolerance	Pattern = CJPAT		> 0.4			> 0.4			> 0.4			> 0.4		
	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.65			> 0.6	5	> 0.65				> 0.6	5	UI
Total jitter	Pattern = CJTPAT													
tolerance	E.60.LV													
	Pattern = PRBS31		> 0.6			_			_			_		UI
	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Deterministic jitter tolerance	Pattern = CJTPAT													
Jitter tolerance	E.60.LV Pattern = PRBS31		> 0.45											UI
Combined deterministic and	E.6.LV, E.12.LV, E.24.LV, E.30.LV			5		> 0.55		UI						
random jitter tolerance	Pattern = CJTPAT													
OBSAI Transmit Ji	tter Generation (12))												
Total jitter at 768 Mbps,	REFCLK = 153.6 MHz	_	_	0.35	_		0.35	_	_	0.35	_	_	0.35	UI
1536 Mbps, and 3072 Mbps	Pattern = CJPAT													
Deterministic jitter at 768 Mbps, 1536 Mbps, and 3072 Mbps	REFCLK = 153.6 MHz Pattern = CJPAT		_	0.17			0.17			0.17			0.17	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 8 of 10)

Symbol/	Conditions	13		C 4		C5, I5			C6			Unit		
Description	Conultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
	Jitter frequency = 21.8 KHz		> 8.5			> 8.5			> 8.5			> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 3072 Mbps	Jitter frequency = 1843.2 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 10 of 10)

Notes to Table 1-40:

(1) Dedicated refclk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.

(2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.

(3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.

(4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.

(5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.

(6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

(7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.

(9) Arria II PCIe receivers are compliant to this specification provided the VTX_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.

(10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.

(11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.

(12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1-41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

Symbol/	0		–C3 and	-13	-	-C4 and	-14	Unit
Description	Conditions	Min	Typ Max		Min	Тур	Max	- Unit
SONET/SDH Transmit Jitter Gener	ation <i>(3)</i>							
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	-	_	0.1	_	_	0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	—	0.01	—	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15	—	—	0.01	—	—	0.01	UI
SONET/SDH Receiver Jitter Tolera	ance <i>(3)</i>							
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5			> 1.5		UI
	Pattern = PRBS15							
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15	5		> 0.15		UI

Symbol/	0dittion		-C3 and	-13	-	-C4 and ·	-14			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit		
	Jitter frequency = 0.06 KHz									
	Pattern = PRBS15		> 15			> 15		UI		
	Jitter frequency = 100 KHZ	. 1.5		4.5						
	Pattern = PRBS15		> 1.5			> 1.5		UI		
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.15				
	Pattern = PRBS15									
	Jitter frequency = 10 MHz		> 0.15			> 0.15		UI		
	Pattern = PRBS15		> 0.15			> 0.15		01		
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>									
Total jitter FC-1	Pattern = CRPAT	—	_	0.23	—		0.23	UI		
Deterministic jitter FC-1	Pattern = CRPAT	—	_	0.11	—		0.11	UI		
Total jitter FC-2	Pattern = CRPAT	—	_	0.33	—		0.33	UI		
Deterministic jitter FC-2	Pattern = CRPAT	—	_	0.2	—	_	0.2	UI		
Total jitter FC-4	Pattern = CRPAT	—	_	0.52	—	_	0.52	UI		
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	—		0.33	UI		
Fibre Channel Receiver Jitter Tol	erance <i>(4), (6)</i>									
Deterministic jitter FC-1	Pattern = CJTPAT		> 0.37	,		> 0.37		UI		
Random jitter FC-1	Pattern = CJTPAT		> 0.31			UI				
Sinusoidal jitter FC-1	Fc/25000		> 1.5		> 1.5			UI		
	Fc/1667		> 0.1			> 0.1				
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33	}	> 0.33			UI		
Random jitter FC-2	Pattern = CJTPAT		> 0.29)		> 0.29		UI		
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI		
	Fc/1667		> 0.1			> 0.1		UI		
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI		
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI		
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI		
	Fc/1667		> 0.1			> 0.1		UI		
XAUI Transmit Jitter Generation ((7)									
Total jitter at 3.125 Gbps	Pattern = CJPAT		_	0.3	—		0.3	UI		
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_		0.17			0.17	UI		
XAUI Receiver Jitter Tolerance (7	7)									
Total jitter	ir —			> 0.65			> 0.65			
Deterministic jitter	—		> 0.37	,		> 0.37		UI		

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

Symbol/	O and l'it's and		-C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)		-					
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4			> 0.4			UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT > 0.66					> 0.66		
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_		UI
HiGig Receiver Jitter Tolerance								
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	> 0.37			_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65			_		UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_		0.3		_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce		•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.67	5	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.98	8	-	_		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Oendikiene		-C3 and	-13	-	-C4 and ·	-14	11 14
Description	Conditions	Min	Тур	Max	Min	Typ Max		Unit
OBSAI Receiver Jitter Tolerance	(15)							
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37		UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	Pattern = CJPAT > 0.55 > 0.55						UI
Sinusoidal jitter tolerance at 768	Jitter frequency = 5.4 KHz Pattern = CJPAT	> 8.5			> 8.5			UI
Mbps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT	> 0.1		> 0.1			UI	
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT		> 8.5			> 8.5		UI
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1		> 0.1			UI
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT	> 8.5		> 8.5			UI	
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1			> 0.1			UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Mada	Resources Used	Performance					
Mode	Number of Multipliers	-3	-4	Unit			
Double mode	1	440	380	MHz			

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used		Perfo	rmance		
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)			730	690	770	920	ps

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Ormshall	Conditions		3	C	4	C5	, I 5	C6		11
Symbol	Gonations		Max	Min	Max	Min	Max	Min	Max	Unit
Clock				·		<u>.</u>	-	<u>.</u>	-	
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

• • •			C3, I3			C4, 14		
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	True differential I/O standards		_	200	_	_	200	ps
t _{rise &} t _{fall}	Emulated differential I/O standards with three external output resistor networks		_	250	_	_	300	ps
	Emulated differential I/O standards with one external output resistor	_	_	500	_	_	500	ps
	True LVDS			100			100	ps
TCCS	Emulated LVDS_E_3R	_	_	250	_	_	250	ps
Receiver								
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps
DPA run length	DPA mode		—	10000	—	—	10000	UI
Soft-CDR PPM tolerance	Soft-CDR mode	_	_	300	_	_	300	± PPM
Sampling Window (SW)	Non-DPA mode	_	_	300	_		300	ps

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Notes to Table 1-54:

(1) When J = 3 to 10, use the SERDES block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.

- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1-55 lists DPA lock time specifications for Arria II GX and GZ devices.

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1-66.	IOE Prog	rammable Dela	y for Arria II	GX Devices
-------------	----------	---------------	----------------	-------------------

	Available	Minimum		Maximum Offset							
Parameter	Settings	Offset	Fast Model			Slow Model					
	(1)	(2)	13	C4	15	13	C4	C5	15	C6	
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

(1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.

(2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67 lists the IOE p	programmable delay	y settings for Arria	II GZ devices.

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

	Available			Max	kimum Off				
Parameter	Settings	Minimum Offset <i>(2)</i>	Fast	Model			Unit		
	(1)		Industrial	Commercial	C3	13	C4	14	
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns

Notes to Table 1-67:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.

(2) Minimum offset does not include the intrinsic delay.

Table 1-68. Glossary (Part 2 of 4)

Letter	Subject	Definitions
	J	High-speed I/O block: Deserialization factor (width of parallel data bus).
G, H, I, J	JTAG Timing Specifications	JTAG Timing Specifications: TMS TDI TDI t_{JCP} t_{JCP} t_{JPSU} t_{JPSU} t_{JPSU} t_{JPSU} t_{JPX} t_{JPCO} t_{JPX} t_{JPX} t_{JPX} t_{JPX}
K, L, M, O, P	PLL Specifications	PLL Specification parameters: Diagram of PLL Specifications (1)
Q, R	RL	Receiver differential input discrete resistor (external to the Arria II device).

Letter	Subject	Definitions		
U,	V _{CM(DC)}	DC common mode input voltage.		
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.		
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.		
V,	V _{IH(AC)}	High-level AC input voltage.		
	V _{IH(DC)}	High-level DC input voltage.		
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.		
	V _{IL(AC)}	Low-level AC input voltage.		
	V _{IL(DC)}	Low-level DC input voltage.		
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.		
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.		
W,				
Х,	w	Llich around 1/0 block. The alexy boost factor		
Y,	vv	High-speed I/O block: The clock boost factor.		
Z				

Document Revision History

Table 1–69 lists the revision history for this chapter.

 Table 1–69. Document Revision History (Part 1 of 2)

Date	Version	Changes
December 2013	4.4	Updated Table 1–34 and Table 1–35.
	4.3	 Updated the V_{CCH_GXBL/R} operating conditions in Table 1–6.
July 2012		 Finalized Arria II GZ information in Table 1–20.
July 2012		 Added BLVDS specification in Table 1–32 and Table 1–33.
		 Updated input and output waveforms in Table 1–68.
December 2011	4.2	 Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		 Minor text edits.
	4.1	Added Table 1–60.
lune 0011		Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
June 2011		 Updated the "Switching Characteristics" section introduction.
		 Minor text edits.