

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	1805
Number of Logic Elements/Cells	42959
Total RAM Bits	3517440
Number of I/O	252
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx45df25i3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
t _{RAMP}	Power Supply Pamp time	Normal POR	0.05		100	ms
	Power Supply Ramp time	Fast POR	0.05		4	ms

Notes to Table 1–5:

(1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.

(2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .

(4) V_{CCI0} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1–6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V (2)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	—	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	—	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	—	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	—	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2		3.3	V
VI	DC input voltage	_	-0.5	—	3.6	V
V ₀	Output voltage	_	0	—	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	_	0.05/0.075		0 1 5 /0 005	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.85/2.375	3.0/2.5 (4)	3.15/2.625	v
V _{CCHIP_L}	Transceiver HIP digital power (left side)	-	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	—	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	—	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	—	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	_	1.05	1.1	1.15	V

Table 1–10 lists the bus hold specifications for Arria II GZ devices.

			V _{CCI0} (V)										
Parameter	Symbol	Cond.	1.2		1	1.5		1.8		2.5		3.0	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μΑ
Bus-hold High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μΑ
Bus-hold Low overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}	_	120	_	160	_	200	_	300	_	500	μA
Bus-hold High overdrive current	I _{odh}	OV < V _{IN} < V _{CCIO}	_	-120	_	-160	_	-200	_	-300	_	-500	μA
Bus-hold trip point	V _{TRIP}	—	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

Table 1–10. Bus Hold Parameters for Arria II GZ Devices

OCT Specifications

Table 1–11 lists the Arria II GX device and differential OCT with and without calibration accuracy.

Gumbal	Description	Conditions (1/)	Calibratio	n Accuracy	11
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit
25-Ω R _S 3.0, 2.5	25-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
50-Ω R _S 3.0, 2.5	50-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
25-Ω R _S 1.8	25-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
50-Ω R _S 1.8	50-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
25-Ω R _S 1.5, 1.2	25-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
50-Ω R _S 1.5, 1.2	50-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	25- Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Ormula d	Description	Opendikione (U)	Resistance	Tolerance	11	
Symbol	Description	Conditions (V)	C3,I3	C4,14	Unit	
25-Ω R _s 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%	
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%	
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%	

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	рF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$C_{CLK1},C_{CLK3},C_{CLK8},$ and C_{CLK10}	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2)	7	28	47	kΩ
P	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2)	8	35	61	kΩ
R _{PU}	programmable pull-up resistor option is enabled.	V _{CCI0} = 1.8 V ±5% (2)	10	57	108	kΩ
		V _{CCI0} = 1.5 V ±5% (2)	13	82	163	kΩ
		V _{CCI0} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$	6	19	29	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$	6	25	42	kΩ
		V _{CCI0} = 1.8 V ±5%	7	35	70	kΩ
		V _{CCI0} = 1.5 V ±5%	8	50	112	kΩ

Notes to Table 1–18:

(1) All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

(2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1-34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/ Description		13			C4		C5 and I5			C 6				
	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock	eference Clock													
Supported I/O Standards		1.2-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL												
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V _{MAX} for a REFCLK pin	_	—	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V _{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	—	—	—	0.2			0.2		—	0.2			0.2	UI
Duty cycle	—	45	—	55	45	_	55	45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Symbol/	Oendition		13			C4			C5 and I	i		C6		11-14
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100		_	mV
V _{ICM}	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
VICM	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCIe							50	MHz to 1.2	5 GHz: –10	dB			
differential mode	XAUI							10	0 MHz to 2	.5 GHz: –10	dB			
Return loss	PCIe							50	MHz to 1.	25 GHz: –6d	IB			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	IB			
Programmable PPM detector (8)	_						62.5, 100, 1 50, 300, 500							ppm
Run length	—		80	—	—	80	—	—	80	—	—	80	—	UI
Programmable equalization	—	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time (9)	—	_	_	75	_	—	75	_	_	75	—	_	75	μs
CDR minimum T1b (10)	—	15	_	_	15	—		15	_	_	15	_	_	μs

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Chapter 1: Device Datasheet for Arria II Devices Switching Characteristics Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Symbol/		-	C3 and –I3	(1)		-C4 and -	14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LV	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	—	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50	_	325	MHz
Absolute V_{MAX} for a \texttt{REFCLK} pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a ${\tt REFCLK}$ pin	—	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)			—	0.2	—		0.2	UI
Duty cycle	—	45	—	55	45	—	55	%
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCle	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCIe	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100		_	100		Ω
V _{ICM} (AC coupled)			1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz		—	-50	—		-50	dBc/Hz
	100 Hz		—	-80	—	—	-80	dBc/H
Transmitter REFCLK Phase	1 KHz	—		-110	_		-110	dBc/H
Noise	10 KHz			-120	_		-120	dBc/Hz
	100 KHz			-120			-120	dBc/Hz
	≥ 1 MHz	—		-130			-130	dBc/H
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz		_	3			3	ps
R _{REF}	_		2000 ± 1%		_	2000 ± 1%	_	Ω

Symbol/	Conditions	-	C3 and –I3	; (1)		-C4 and -	14	Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	- Unit
	PCIe Gen1	2.5 - 3.5						MHz
	PCIe Gen2			6 -	8			MHz
-3 dB Bandwidth	(OIF) CEI PHY at 4.976 Gbps	7 - 11						MHz
	(OIF) CEI PHY at 6.375 Gbps	5 - 10						
	XAUI			2 -	4			MHz
	SRIO 1.25 Gbps	3 - 5.5					MHz	
	SRIO 2.5 Gbps	3 - 5.5						MHz
	SRIO 3.125 Gbps	2 - 4						MHz
	GIGE			2.5 -	4.5			MHz
	SONET 0C12			1.5 -	2.5			MHz
	SONET OC48			3.5	- 6			MHz
Transceiver-FPGA Fabric I	nterface	-						
Interface speed	—	25		325	25		250	MHz
Digital reset pulse width	—		Minim	um is two pa	arallel cloc	k cycles	-	

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Notes to Table 1-35:

(1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ225, EP2AGZ300, and EP2AGZ350.

- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Symbol/	Oanditiana	13			C4			C5, I	5	C6			Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SDI Transmitter J	itter Generation <i>(8)</i>		• •	-	-									
Alignment jitter (peak-to-peak)	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2			0.2		_	0.2		_	0.2			UI
	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3		_	0.3		_	0.3	_	_	0.3			UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>													
	Jitter frequency = 15 KHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 2		> 2		> 2			> 2		UI			
	Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 0.3			> 0.3		> 0.3			> 0.3		UI		
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	a rate = Gbps (3G) $n = singlescramble> 0.3> 0.3> 0.3$	> 0.3		UI									

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/	Oendikiene		-C3 and	-13	-	-C4 and ·	-14	11 14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Jitter Tolerance	(15)							
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37		
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	> 0.55				> 0.55	UI	
Sinusoidal jitter tolerance at 768	Jitter frequency = 5.4 KHz Pattern = CJPAT	> 8.5				> 8.5		
Mbps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT	Pattern = CJPAT > 8.5 itter frequency = 460 MHz to 20 MHz > 0.1 Pattern = CJPAT > 0.1	> 0.1	> 0.1				
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT	> 8.5			> 8.5			UI
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1		> 0.37 > 0.55 > 8.5 > 0.1	UI		
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT	> 8.5		> 8.5			UI	
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1		> 0.1		UI		

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1–42 lists the clock tree specifications for Arria II GX devices.

Table 1-42.	Clock Tree Performan	ce for Arria II GX Devices
-------------	-----------------------------	----------------------------

Clock Network		Unit			
	I 3, C4	C5,I5	C6	Unit	
GCLK and RCLK	500	500	400	MHz	
PCLK	420	350	280	MHz	

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1–43. Clock Tree Performance for Arria II GZ Devices

Clock Notwork	Perfo	Unit	
Clock Network	–C3 and –I3	-C4 and -14	UIII
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{VC0}	PLL VCO operating Range (2)	600		1,400	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INCCJ} <i>(3)</i> ,	Input clock cycle-to-cycle jitter (Frequency \geq 100 MHz)	—	—	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency \leq 100 MHz)	—	—	±750	ps (p–p)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	<u> </u>	0.3	_	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	—	MHz
	PLL closed-loop high bandwidth (7)	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—		±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10		—	ns
Input clock cycle to cycle jitter (FREE > 100 MHz)		—		0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle to cycle jitter (F _{REF} < 100 MHz)	—		±750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
t _{outpj_dc} (5)	Period Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_		17.5	mUI (p-p)
L (7)	Cycle to Cycle Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
t _{outccj_dc} (5)	Cycle to Cycle Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
t _{outpj_10} <i>(5)</i> ,	Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Period Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{outccj_10} <i>(5)</i> ,	Cycle to Cycle Jitter for clock output on regular I/O $(F_{\text{OUT}} \geq 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle to Cycle Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100MHz$)	_	_	250	ps (p-p)
(5), (6)	Period Jitter for dedicated clock output in cascaded PLLs $(F_{0UT} < 100MHz)$	_	_	25	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for duration of 100 us	_	_	±10	%

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O F_{MAX} or F_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- (6) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46.	DSP Block Performance	e Specifications for	Arria II GX Devices	(Note 1)
-------------	-----------------------	----------------------	---------------------	----------

Mada	Resources Used			- Unit		
Mode	Number of Multipliers	C4	13	C5,I5	C6	
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

(1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.

(2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Mode	Resources Used	Perfor	nance	Unit
mout	Number of Multipliers	-3	-4	
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 × 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Mada	Resources Used	Performance			
Mode	Number of Multipliers	-3	-4	Unit	
Double mode	1	440	380	MHz	

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used	Performance				
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)	_		730	690	770	920	ps

Configuration

Table 1–50 lists the configuration mode specifications for Arria II GX and GZ devices.

Drogromming Modo	D	Unit		
Programming Mode	Min	Тур	Max	UIIIL
Passive serial	—	—	125	MHz
Fast passive parallel	—	—	125	MHz
Fast active serial (fast clock)	17	26	40	MHz
Fast active serial (slow clock)	8.5	13	20	MHz
Remote update only in fast AS mode			10	MHz

Table 1–50. Configuration Mode Specifications for Arria II Devices

JTAG Specifications

Table 1–51 lists the JTAG timing parameters and values for Arria II GX and GZ devices.

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30	—	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPC0}	JTAG port clock to output	—	11	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14	ns

 Table 1–51. JTAG Timing Parameters and Values for Arria II Devices

Chip-Wide Reset (Dev_CLRn) Specifications

Table 1–52 lists the specifications for the chip-wide reset (Dev_CLRn) for Arria II GX and GZ devices.

Table 1–52. Chip-Wide Reset (Dev_CLRn) Specifications for Arria II Devices

Description	Min	Тур	Max	Unit
Dev_CLRn	500			μS

Ormital	Oanditiana	13		C	4	C5	,15	C6		Unit
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Transmitter										
	SERDES factor, J = 3 to 10 (using dedicated SERDES)	150	1250 <i>(2)</i>	150	1250 <i>(2)</i>	150	1050 <i>(2)</i>	150	840	Mbps
f _{HSDR_TX} (true LVDS output data rate)	SERDES factor, J = 4 to 10 (using logic elements as SERDES)	(3)	945	(3)	945	(3)	840	(3)	740	Mbps
	$\begin{array}{c c} SERDES \text{ factor,} \\ J = 2 \text{ (using} \\ DDR \text{ registers)} \\ and J = 1 \\ (using SDR \\ register) \end{array} (3)$	(3)	(3)	(3)	(3)	(3)	(3)	(3)	Mbps	
f _{HSDR_TX_E3R} (emulated LVDS_E_3R output data rate) (<i>7</i>)	SERDES factor, J = 4 to 10	(3)	945	(3)	945	(3)	840	(3)	740	Mbps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 2 of 4)

Figure 1–6 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Figure 1–6. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for Arria II GZ Devices at a 1.25 Gbps Data Rate

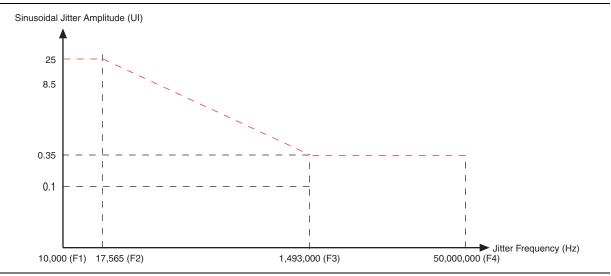


Table 1–56 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Table 1–56. LVDS Soft-CDR/DPA Sinusoidal J	itter Mask Values for Arria II GZ Devices at
1.25 Gbps Data Rate	

Jitter Freq	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

External Memory Interface Specifications

 For the maximum clock rate supported for Arria II GX and GZ device family, refer to the External Memory Interface Spec Estimator page on the Altera website.

Table 1–57 lists the external memory interface specifications for Arria II GX devices.

Table 1–57. External Memory Interface Specifications for Arria II GX Devices (Part 1 of 2)

Frequency	Fr	equency Range (MI	łz)	Resolution	DQS Delay	Number of Delay Chains	
Mode	C4	I3, C5, I5	C6	(°)	Buffer Mode <i>(1)</i>		
0	90-140	90-130	90-110	22.5	Low	16	
1	110-180	110-170	110-150	30	Low	12	
2	140-220	140-210	140-180	36	Low	10	
3	170-270	170-260	170-220	45	Low	8	
4	220-340	220-310	220-270	30	High	12	

Frequency	Frequency Range (MHz)		Resolution	DQS Delay	Number of	
Mode	C4	13, C5, 15	C6	(°)	Buffer Mode <i>(1)</i>	Delay Chains
5	270-410	270-380	270-320	36	High	10
6	320-450	320-410	320-370	45	High	8

Table 1-57	. External Memory	Interface	Specifications	for Arria II GX	Devices	(Part 2 of 2)
------------	-------------------	-----------	----------------	-----------------	---------	---------------

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Frequency Range (MHz)		Augilable Dhage Ohiff	DQS Delay	Number of	
Frequency Mode	-3	-4	Available Phase Shift	Buffer Mode <i>(1)</i>	Delay Chains
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10
3	180-260	180-240	45°, 90°,135°, 180°	Low	8
4	240-320	240-290	30°, 60°, 90°, 120°	High	12
5	290-380	290-360	36°, 72°, 108°, 144°	High	10
6	360-450	360-450	45°, 90°, 135°, 180°	High	8
7	470-630	470-590	60°, 120°, 180°, 240°	High	6

Note to Table 1–58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1–59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)	Table 1–59	. DQS Phase Offset Dela	y Per Setting for Arria II GX Device	s (Note 1), (2),	(3)
---	------------	-------------------------	--------------------------------------	------------------	-----

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
13, C5, 15	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

(1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.

(2) The typical value equals the average of the minimum and maximum values.

(3) The delay settings are linear.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions
Letter A, B, C, D	Subject Differential I/O Standards	Definitions Receiver Input Waveforms Single-Ended Waveform V_{CM} Positive Channel (p) = V _H Negative Channel (n) = V _{IL} Ground Differential Waveform V_{ID} V_{OD} V_{ID} V_{OD} V_{ID} V_{OD} V_{ID} V_{OD} V_{ID}
	f _{HSCLK}	Left/Right PLL input clock frequency.
_		High-speed I/O block: Maximum/minimum LVDS data transfer rate
E, F	f _{HSDR}	(f _{HSDR} = 1/TUI), non-DPA.
	f _{hsdrdpa}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.