

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

D)e	ta	i	s

Details	
Product Status	Obsolete
Number of LABs/CLBs	1805
Number of Logic Elements/Cells	42959
Total RAM Bits	3517440
Number of I/O	252
Number of Gates	·
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx45df25i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_L}	Supplies transceiver high voltage power (left side)	-0.5	3.75	V
V _{CCA_R}	Supplies transceiver high voltage power (right side)	-0.5	3.75	V
V_{CCHIP_L}	Supplies transceiver HIP digital power (left side)	-0.5	1.35	V
V _{CCR_L}	Supplies receiver power (left side)	-0.5	1.35	V
V _{CCR_R}	Supplies receiver power (right side)	-0.5	1.35	V
V _{CCT_L}	Supplies transmitter power (left side)	-0.5	1.35	V
V _{CCT_R}	Supplies transmitter power (right side)	-0.5	1.35	V
V _{CCL_GXBLn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (left side)	-0.5	1.35	V
V _{CCL_GXBRn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (right side)	-0.5	1.35	V
V _{CCH_GXBLn} (1)	Supplies power to the transceiver PMA output (TX) buffer (left side)	-0.5	1.8	V
V _{CCH_GXBRn} (1)	Supplies power to the transceiver PMA output (TX) buffer (right side)	-0.5	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2. /	Absolute Maximum	Ratings for Arria	II GZ Devices	(Part 2 of 2)
--------------	------------------	-------------------	---------------	---------------

Note to Table 1-2:

(1) n = 0, 1, or 2.

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–3 and undershoot to -2.0 V for magnitude of currents less than 100 mA and periods shorter than 20 ns.

Table 1–3 lists the Arria II GX and GZ maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the device lifetime. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 5.41% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 5.41/10ths of a year.

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1.4/1.5 <i>(5)</i>	4 575	V
V _{CCH_GXBRn} (3)	Transmitter output buffer power (right side)	_	1.33/1.423	1.4/1.5 (5)	1.575	V
т	Operating junction temperature	Commercial	0	_	85	°C
TJ		Industrial	-40	_	1.15 1.15 1.575	°C
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	—	100	ms
t _{RAMP}		Fast POR (PORSEL=1)	0.05	_	4	ms

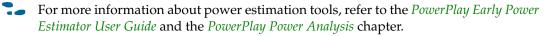
Notes to Table 1-6:

 Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(2) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(3) n = 0, 1, or 2.

(4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.


- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

Table 1–10 lists the bus hold specifications for Arria II GZ devices.

			V _{CCIO} (V)										
Parameter	Symbol	Cond.	1.2		1.5		1.8		2.5		3.0		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μΑ
Bus-hold High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μA
Bus-hold Low overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}	_	120	_	160	_	200	_	300	_	500	μA
Bus-hold High overdrive current	I _{odh}	OV < V _{IN} < V _{CCIO}	_	-120	_	-160	_	-200	_	-300	_	-500	μA
Bus-hold trip point	V _{TRIP}	—	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

Table 1–10. Bus Hold Parameters for Arria II GZ Devices

OCT Specifications

Table 1–11 lists the Arria II GX device and differential OCT with and without calibration accuracy.

Gumbal	Description	Conditions (1/)	Calibratio	n Accuracy	11	
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit	
25-Ω R _S 3.0, 2.5	25-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%	
50-Ω R _S 3.0, 2.5	50-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%	
25-Ω R _S 1.8	25-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%	
50-Ω R _S 1.8	50-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%	
25-Ω R _S 1.5, 1.2	25-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%	
50-Ω R _S 1.5, 1.2	50-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%	
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	25- Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%	

I/O Standard Specifications

Table 1–22 through Table 1–35 list input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by the Arria II device family. They also show the Arria II device family I/O standard specifications. V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL}, respectively.

For an explanation of terms used in Table 1–22 through Table 1–35, refer to "Glossary" on page 1–74.

Table 1–22 lists the single-ended I/O standards for Arria II GX devices.

I/O Standard	V _{CCIO} (V)		V _{IL} (V)		V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{oh}	
i/o Stailuaru	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mA)
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} -0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2	1	-1
1.8 V LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCI0}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCI0}	0.75 × V _{CCIO}	2	-2
3.0-V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCI0} + 0.3	0.1 × V _{CCIO}	$0.9 \times V_{CCIO}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15		0.35 × V _{CCIO}	$0.5 \times V_{CCIO}$	V _{CCI0} + 0.3	0.1 × V _{CCIO}	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–22. Single-Ended I/O Standards for Arria II GX Devices

Table 1–23 lists the single-ended I/O standards for Arria II GZ devices.

Table 1-23	. Single-Ended I/O Standards for Arria II GZ Devices	(Part 1 of 2)
------------	--	---------------

1/0 Chandard	V _{CCIO} (V)		VII	V _{IL} (V)		V _{IH} (V)		V _{OH} (V)	I _{OL}	I _{oh}	
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCI0}	2	-2

P

I/O Stendard	1	V _{CCIO} (V	/)		V _{ID} (mV)		V _{ICM(I}	_{nc)} (V)	Vo	_D (V) <i>(</i>	3)	V _{OCM} (V) <i>(3)</i>		
Standard <i>(2)</i>	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V		0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5
Mini-LVDS (HIO)	2.375	2.5	2.625	200	_	600	0.4	1.32 5	0.25	_	0.6	1	1.2	1.4
Mini-LVDS (VIO)	2.375	2.5	2.625	200	_	600	0.4	1.32 5	0.25	_	0.6	1	1.2	1.5
LVPECL	2.375	2.5	2.625	300	—	_	0.6	1.8	—	—	—	—	—	—
BLVDS (4)	2.375	2.5	2.625	100			_							

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

Notes to Table 1-33:

(1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.

(2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.

(3) R_L range: $90 \le RL \le 110 \Omega$.

(4) There are no fixed V_{ICM}, V_{oD}, and V_{oCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Š	ŝ
vitch	apt
iing	ıpter 1
C	••
Switching Characteristics	1: Device C
eri	e
sti	ă
S	as
	he
	et -
	Datasheet for Arria II Devices
	Þ
	Ę.
	=
	ev.
	Ĉ
	õ

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/	0		13			C4			C5 and IS	5	C6			Unit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_		_	4000	_	_	4000			4000	_	_	4000	ns
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3		_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6		_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	—	600	—	6375	600		3750	600	—	3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	—	650	_	_	650	_	_	650	—	_	650		mV
Differential on-chip termination resistors	100–Ω setting		100		_	100			100		_	100		Ω
Return loss	PCIe		1	1			50 MHz to	1.25 GHz:	-10dB					
differential mode	XAUI		312 MHz to 625 MHz: –10dB 625 MHz to 3.125 GHz: –10dB/decade slope											
Return loss common mode	PCIe						50 MHz to	1.25 GHz:	-6dB					
Rise time (2)	—	50	—	200	50		200	50	—	200	50	—	200	ps
Fall time		50		200	50	_	200	50		200	50	_	200	ps

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/ Con	Condition		13			C4			C5 and I5	i		C6		Unit
Description	Conuncion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII
Digital reset pulse width	—			•		М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1–34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Symbol/	Conditions	-	C3 and –I3	i (1)		-C4 and -	-14	11
Description	Conditions	Min	Тур	Мах	Min	Тур	Max	- Unit
Transceiver Clocks			•					
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μs
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCN	IL, 2.5-V PC	ML, LVPE	CL, and L\	/DS	
Data rate (16)	—	600	—	6375	600	—	3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	V
Absolute $V_{\mbox{\scriptsize MIN}}$ for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting		_	2.7	-	_	2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	_	1.6	_	_	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins <i>(8)</i>	Data Rate > 5 Gbps Equalization = 0 DC gain = 0 dB	165	_		165	_		mV
V	V _{ICM} = 0.82 V setting		820 ± 10	%		820 ± 109	%	mV
V _{ICM}	$V_{ICM} = 1.1 V$ setting (7)		1100 ± 10	%		1100 ± 10	1%	mV

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Symbol/	Oanditiana	_	C3 and –I3	(1)		·14	11	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter					-	• •		
Supported I/O Standards				1.5-V PCML				
Data rate (14)	—	600	_	6375	600	_	3750	Mbps
V _{OCM}	0.65 V setting		650			650	_	mV
	85– Ω setting		85 ± 15%	0		85 ± 15%	/o	Ω
Differential on-chip	100– Ω setting		100 ± 15°	%		100 ± 150	%	Ω
termination resistors	120– Ω setting		120 ± 15°	%		120 ± 150	%	Ω
	150- Ω setting		150 ± 159	%		150 ± 159	%	Ω
Differential and common mode return loss	$\begin{array}{c} \mbox{PCle Gen1 and} \\ \mbox{Gen2 (TX V_{0D}=4),} \\ \mbox{XAUI (TX V_{0D}=6),} \\ \mbox{HiGig} + \\ \mbox{(TX } V_{0D}$ =6),} \\ \mbox{CEI SR/LR} \\ \mbox{(TX } V_{0D}=8),} \\ \mbox{SRIO SR (V_{0D} =8),} \\ \mbox{SRIO LR (V_{0D} =8),} \\ \mbox{CPRI LV (V_{0D} =6),} \\ \mbox{CPRI HV (V_{0D} =6),} \\ \mbox{SATA (V_{0D} =4),} \end{array}			Com	oliant			
Rise time (15)	—	50	—	200	50	—	200	ps
Fall time (15)	—	50	_	200	50	_	200	ps
Intra-differential pair skew	—		_	15		_	15	ps
Intra-transceiver block transmitter channel-to-channel skew	×4 PMA and PCS bonded mode Example: XAUI, PCIe ×4, Basic ×4	_	_	120	_	_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	×8 PMA and PCS bonded mode Example: PCIe ×8, Basic ×8	_	_	500	_	_	500	ps
CMUO PLL and CMU1 PLL								
Supported Data Range	_	600		6375	600	_	3750	Mbps
<pre>pll_powerdown minimum pulse width (tpll_powerdown)</pre>	_		1			1		μS
CMU PLL lock time from pll_powerdown de-assertion	_	_	_	100	_	_	100	μS

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 4 of 5)

Symbol/	Conditions	-	C3 and –I3	; (1)		-C4 and -	14	llait
Description	Conditions	Min	Тур	Max	Min	Тур	Max	- Unit
	PCIe Gen1			2.5 -	3.5	•		MHz
	PCIe Gen2			6 -	8			MHz
-3 dB Bandwidth	(OIF) CEI PHY at 4.976 Gbps	7 - 11						
	(OIF) CEI PHY at 6.375 Gbps	5 - 10						MHz
	XAUI			2 -	4			MHz
	SRIO 1.25 Gbps	3 - 5.5						MHz
	SRIO 2.5 Gbps	3 - 5.5						MHz
	SRIO 3.125 Gbps			2 -	4			MHz
	GIGE			2.5 -	4.5			MHz
	SONET 0C12			1.5 -	2.5			MHz
	SONET OC48			3.5	- 6			MHz
Transceiver-FPGA Fabric I	nterface	-						
Interface speed	—	25		325	25	—	250	MHz
Digital reset pulse width	—		Minim	um is two pa	arallel cloc	k cycles	-	

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Notes to Table 1-35:

(1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ225, EP2AGZ300, and EP2AGZ350.

- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX (Quartus II		Arria II GX (Quartus II Software) VOD Setting										
Software) First Post Tap Setting	1	2	4	5	6	7	Unit					
0 (off)	0	0	0	0	0	0	—					
1	0.7	0	0	0	0	0	dB					
2	2.7	1.2	0.3	0	0	0	dB					
3	4.9	2.4	1.2	0.8	0.5	0.2	dB					
4	7.5	3.8	2.1	1.6	1.2	0.6	dB					
5	—	5.3	3.1	2.4	1.8	1.1	dB					
6	_	7	4.3	3.3	2.7	1.7	dB					

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Symbol/	0dittion		-C3 and	-13	-	-C4 and ·	-14	Unit
Description		Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz	> 15			> 15			
	Pattern = PRBS15		> 15			UI		
	Jitter frequency = 100 KHZ	Jitter frequency = 100 KHZ > 1.5			> 1.5			
	Pattern = PRBS15		> 1.0		> 1.0			UI
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz	> 0.15				UI		
	Pattern = PRBS15							
	Jitter frequency = 10 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15		> 0.15			> 0.15		01
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>							
Total jitter FC-1	Pattern = CRPAT	—	_	0.23	—		0.23	UI
Deterministic jitter FC-1	Pattern = CRPAT	— — 0.11		—		0.11	UI	
Total jitter FC-2	Pattern = CRPAT	—	_	0.33	—		0.33	UI
Deterministic jitter FC-2	Pattern = CRPAT	—	_	0.2	—	_	0.2	UI
Total jitter FC-4	Pattern = CRPAT	— — 0.52		—	_	0.52	UI	
Deterministic jitter FC-4	Pattern = CRPAT	— — 0.33		—		0.33	UI	
Fibre Channel Receiver Jitter Tol	erance <i>(4), (6)</i>							
Deterministic jitter FC-1	Pattern = CJTPAT	> 0.37		> 0.37			UI	
Random jitter FC-1	Pattern = CJTPAT	> 0.31		> 0.31			UI	
Sinusoidal jitter FC-1	Fc/25000	> 1.5		> 1.5 > 1.5				UI
	Fc/1667		> 0.1 > 0.1				UI	
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33	}		> 0.33		UI
Random jitter FC-2	Pattern = CJTPAT		> 0.29)		> 0.29		UI
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI
	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI
	Fc/1667		> 0.1			> 0.1		UI
XAUI Transmit Jitter Generation ((7)							
Total jitter at 3.125 Gbps	Pattern = CJPAT	— — 0.3		—		0.3	UI	
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_		0.17			0.17	UI
XAUI Receiver Jitter Tolerance (7	7)							
Total jitter	—	> 0.65			> 0.65			UI
Deterministic jitter	—		> 0.37	,		> 0.37		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46.	DSP Block Performance	e Specifications for	Arria II GX Devices	(Note 1)
-------------	-----------------------	----------------------	---------------------	----------

Mada	Resources Used			11		
Mode	Number of Multipliers	C4	13	C5,I5	C6	– Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

(1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.

(2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Mode	Resources Used	Perfor	Unit	
Muue	Number of Multipliers	-3	-4	
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 × 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Mode	Resources Used	Performance			
	Number of Multipliers	-3	-4	Unit	
Double mode	1	440	380	MHz	

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used		Perfo	rmance		Unit
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)			730	690	770	920	ps

• • •		C3, I3			C4, I4				
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
	True differential I/O standards		_	200	_	_	200	ps	
t _{rise &} t _{fall}	Emulated differential I/O standards with three external output resistor networks		_	250	_	_	300	ps	
	Emulated differential I/O standards with one external output resistor	_	_	500	_	_	500	ps	
	True LVDS			100			100	ps	
TCCS	Emulated LVDS_E_3R	_	_	250	_	_	250	ps	
Receiver									
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps	
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps	
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)	_	(5)	Mbps	
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps	
DPA run length	DPA mode		—	10000	—	—	10000	UI	
Soft-CDR PPM tolerance	Soft-CDR mode	_	_	300	_	_	300	± PPM	
Sampling Window (SW)	Non-DPA mode	_	_	300	_		300	ps	

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Notes to Table 1-54:

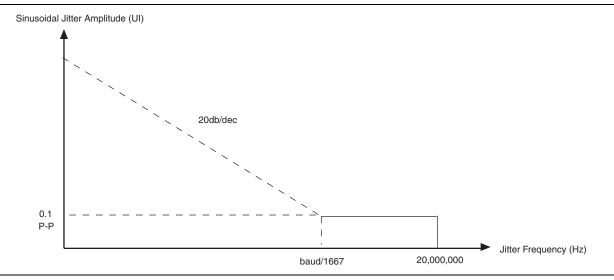
(1) When J = 3 to 10, use the SERDES block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.

- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1-55 lists DPA lock time specifications for Arria II GX and GZ devices.


Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions <i>(4)</i>	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
Falallel haplu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
IVIISCEIIAIIEOUS	01010101	8	32	640 data transitions

Notes to Table 1-55:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in the table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 1–5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at a data rate less than 1.25 Gbps and all the Arria II GX devices.

Figure 1–5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for All Arria II GX Devices and for Arria II GZ Devices at a Data Rate less than 1.25 Gbps

Frequency	Fr	Frequency Range (MHz)			DQS Delay	Number of
Mode	C4	13, C5, 15	C6	(°)	Buffer Mode <i>(1)</i>	Delay Chains
5	270-410	270-380	270-320	36	High	10
6	320-450	320-410	320-370	45	High	8

Table 1–57	. External Memory	Interface	Specifications	for Arria II GX	Devices	(Part 2 of 2)
------------	-------------------	-----------	----------------	-----------------	---------	---------------

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Francisco Manda	Frequency I	Range (MHz)	Augilable Dhage Ohiff	DQS Delay	Number of Delay Chains	
Frequency Mode	-3	-4	Available Phase Shift	Buffer Mode <i>(1)</i>		
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16	
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12	
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10	
3	180-260	180-240	45°, 90°,135°, 180°	Low	8	
4	240-320	240-290	30°, 60°, 90°, 120°	High	12	
5	290-380	290-360	36°, 72°, 108°, 144°	High	10	
6	360-450	360-450	45°, 90°, 135°, 180°	High	8	
7	470-630	470-590	60°, 120°, 180°, 240°	High	6	

Note to Table 1–58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1–59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)	Table 1–59	. DQS Phase Offset Dela	y Per Setting for Arria II GX Device	s (Note 1), (2),	(3)
---	------------	-------------------------	--------------------------------------	------------------	-----

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
13, C5, 15	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

(1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.

(2) The typical value equals the average of the minimum and maximum values.

(3) The delay settings are linear.

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions		
Letter A, B, C, D	Subject Differential I/O Standards	Definitions Receiver Input Waveforms Single-Ended Waveform V_{CM} Positive Channel (p) = V _H Negative Channel (n) = V _{IL} Ground Differential Waveform V_{ID} V_{OD} V_{ID} V_{OD} V_{ID} V_{OD} V_{ID} V_{OD} V_{ID}		
	f _{HSCLK}	Left/Right PLL input clock frequency.		
_		High-speed I/O block: Maximum/minimum LVDS data transfer rate		
E, F	f _{HSDR}	(f _{HSDR} = 1/TUI), non-DPA.		
	f _{hsdrdpa}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.		

Letter	Subject	Definitions			
S	Subject SW (sampling window) Single-ended Voltage Referenced I/O Standard	The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: <i>Timing Diagram</i> BIT Time BIT Time O.5 x TCCS The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The work logic state is then maintained as long as the input stays beyond the AC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: <i>Single-Ended Voltage Referenced I/O Standard</i> V _{IH(AC)} V _{IH(AC)} V _{IH(AC)} V _{IH(AC)} V _{IH(AC)}			
	t _C	High-speed receiver and transmitter input and output clock period.			
т	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).			
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.			
	t _{DUTY}	Timing Unit Interval (TUI)			
	5011	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_c/w)			
	t _{FALL}	Signal high-to-low transition time (80-20%)			
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.			
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.			
	t _{OUTPJ_DC}	Period jitter on the dedicated clock output driven by a PLL.			
	-	Signal low-to-high transition time (20-80%).			

 Table 1–68. Glossary (Part 3 of 4)

Table 1-69.	Document	Revision	Historv	(Part 2 of 2)
				(

Date	Version	Changes
		 Added Arria II GZ information.
December 2010		 Added Table 1–61 with Arria II GX information.
	4.0	 Updated Table 1–1, Table 1–2, Table 1–5, Table 1–6, Table 1–7, Table 1–11, Table 1–35, Table 1–37, Table 1–40, Table 1–42, Table 1–44, Table 1–45, Table 1–57, Table 1–61, and Table 1–63.
		 Updated Figure 1–5.
		 Updated for the Quartus II version 10.0 release.
		 Updated the first paragraph for searchability.
		 Minor text edits.
		 Updated Table 1–1, Table 1–4, Table 1–16, Table 1–19, Table 1–21, Table 1–23, Table 1–25, Table 1–26, Table 1–30, and Table 1–35
		 Added Table 1–27 and Table 1–29.
	2.0	 Added I3 speed grade information to Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
July 2010	3.0	 Updated the "Operating Conditions" section.
		 Removed "Preliminary" from Table 1–19, Table 1–21, Table 1–22, Table 1–23, Table 1–24, Table 1–25, Table 1–26, Table 1–28, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Figure 1–4.
		 Minor text edits.
		Updated for the Quartus II version 9.1 SP2 release:
March 2010	2.3	 Updated Table 1–3, Table 1–7, Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25 and Table 1–33.
		 Updated "Recommended Operating Conditions" section.
		 Minor text edits.
February 2010	2.2	Updated Table 1–19.
	2.1	Updated for Arria II GX v9.1 SP1 release:
February 2010		■ Updated Table 1–19, Table 1–23, Table 1–28, Table 1–30, and Table 1–33.
		Added Figure 1–5.
		 Minor text edits.
	2.0	Updated for Arria II GX v9.1 release:
		 Updated Table 1–1, Table 1–4, Table 1–13, Table 1–14, Table 1–19, Table 1–15, Table 1–22, Table 1–24, and Table 1–28.
November 2009		Added Table 1–6 and Table 1–33.
		Added "Bus Hold" on page 1–5.
		 Added "IOE Programmable Delay" section.
		Minor text edit.
lune 2000	10	 Updated Table 1–1, Table 1–3, Table 1–7, Table 1–8, Table 1–18, Table 1–23, Table 1–25, Table 1–26, Table 1–29, Table 1–30, Table 1–31, Table 1–32, and Table 1–33.
June 2009	1.2	Added Table 1–32.
		■ Updated Equation 1–1.
March 2009	1.1	Added "I/O Timing" section.
February 2009	1.0	Initial release.