

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1805
Number of Logic Elements/Cells	42959
Total RAM Bits	3517440
Number of I/O	364
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx45df29c4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-3. Maximum Allowed Overshoot During Transitions for Arria II Devices

Symbol	Description	Condition (V)	Overshoot Duration as % of High Time	Unit
		4.0	100.000	%
		4.05	79.330	%
		4.1	46.270	%
		4.15	27.030	%
		4.2	15.800	%
		4.25	9.240	%
V _I (AC)	AC Input Voltage	4.3	5.410	%
		4.35	3.160	%
		4.4	1.850	%
		4.45	1.080	%
		4.5	0.630	%
		4.55	0.370	%
		4.6	0.220	%

Maximum Allowed I/O Operating Frequency

Table 1–4 lists the maximum allowed I/O operating frequency for Arria II GX I/Os using the specified I/O standards to ensure device reliability.

Table 1-4. Maximum Allowed I/O Operating Frequency for Arria II GX Devices

I/O Standard	I/O Frequency (MHz)
HSTL-18 and HSTL-15	333
SSTL -15	400
SSTL-18	333
2.5-V LVCMOS	260
3.3-V and 3.0-V LVTTL	
3.3-V, 3.0-V, 1.8-V, and 1.5-V LVCMOS	250
PCI and PCI-X	250
SSTL-2	
1.2-V LVCMOS HSTL-12	200

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ Devices

0	Paradotta:	0	Resistance	Tolerance	1114
Symbol	Description	Conditions (V)	C3,I3	C4,I4	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	$V_{CCIO} = 3.0, 2.5$	± 40	± 40	%
25-Ω R _S 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCIO} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCIO} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} = R_{SCAL} \bigg(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO}.

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$\begin{array}{c} C_{\text{CLK1}},C_{\text{CLK3}},C_{\text{CLK8}},\\ \text{and}C_{\text{CLK10}} \end{array}$	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (2)	7	28	47	kΩ
R _{PU}	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (2)	8	35	61	kΩ
тър	programmable pull-up resistor	$V_{CCIO} = 1.8 \text{ V } \pm 5\% $ (2)	10	57	108	kΩ
	option is enabled.	$V_{CCIO} = 1.5 \text{ V } \pm 5\% $ (2)	13	82	163	kΩ
		V _{CCIO} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$	6	19	29	kΩ
	Value of TOV also still datus	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$	6	25	42	kΩ
		$V_{CCIO} = 1.8 \text{ V } \pm 5\%$	7	35	70	kΩ
		$V_{CCIO} = 1.5 \text{ V } \pm 5\%$	8	50	112	kΩ

Notes to Table 1-18:

⁽¹⁾ All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

⁽²⁾ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

Table 1–30 lists the HSTL I/O standards for Arria II GX devices.

Table 1–30. Differential HSTL I/O Standards for Arria II GX Devices

I/O Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)			V _{X(AC)} (V)	1	V _{CM(DC)} (\	<i>I</i>)	V _{DIF(AC)} (V)	
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.88	_	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71	_	0.79	0.4	
HSTL-12 Class I, II	1.14	1.2	1.26	0.16		_	0.5 × V _{CCIO}	_	0.48 × V _{CCIO}	0.5 × V _{CCIO}	0.52 × V _{CCIO}	0.3	

Table 1–31 lists the HSTL I/O standards for Arria II GZ devices.

Table 1–31. Differential HSTL I/O Standards for Arria II GZ Devices

I/O Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)			V _{X(AC)} (V)		,	V _{CM(DC)} (V	")	V _{DIF(AC)} (V)	
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2	_	0.78	_	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.68	_	0.9	0.68	_	0.9	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO} + 0.3	_	0.5 × V _{CCIO}	_	0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.3	V _{CCIO} + 0.48

Table 1–32 lists the differential I/O standard specifications for Arria II GX devices.

Table 1–32. Differential I/O Standard Specifications for Arria II GX Devices (Note 1)

I/O	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM} (V _{ICM} (V) <i>(2)</i>		_{DD} (V)	(3)	V _{OCM} (V)			
Standard	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	
2.5 V LVDS	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.80	0.247	_	0.6	1.125	1.25	1.375	
RSDS (4)	2.375	2.5	2.625	_		_	_	_	0.1	0.2	0.6	0.5	1.2	1.4	
Mini-LVDS (4)	2.375	2.5	2.625	_	_	_	_	_	0.25	_	0.6	1	1.2	1.4	
LVPECL (5)	2.375	2.5	2.625	300	_	_	0.6	1.8	_	—	_	_	_	_	
BLVDS (6)	2.375	2.5	2.625	100	_		_	_	_	_	_		_	_	

Notes to Table 1-32:

- (1) The 1.5 V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) V_{IN} range: 0 <= V_{IN} <= 1.85 V.
- (3) R_L range: $90 \le RL \le 110 \Omega$.
- (4) The RSDS and mini-LVDS I/O standards are only supported for differential outputs.
- (5) The LVPECL input standard is supported at the dedicated clock input pins (GCLK) only.
- (6) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Table 1–33 lists the differential I/O standard specifications for Arria II GZ devices.

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

I/O	1	V _{CCIO} (V	1)		V _{ID} (mV)		V _{ICM(E}	_{IC)} (V)	V ₀	_D (V) <i>(</i> 3	3)	V _{OCM} (V) (3)			
Standard (2)	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375	
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5	
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4	
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5	
Mini-LVDS (HIO)	2.375	2.5	2.625	200	l	600	0.4	1.32 5	0.25		0.6	1	1.2	1.4	
Mini-LVDS (VIO)	2.375	2.5	2.625	200		600	0.4	1.32 5	0.25		0.6	1	1.2	1.5	
LVPECL	2.375	2.5	2.625	300			0.6	1.8			_	_		_	
BLVDS (4)	2.375	2.5	2.625	100		_	_	_	_	_	_	_	_	_	

Notes to Table 1-33:

- (1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.
- (3) R_1 range: $90 \le RL \le 110 \Omega$.
- (4) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4			C5 and I5	5			Unit	
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCle	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_	1100 ± 5%			1100 ± 5%				1100 ± 5%	%		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	_	-50	_	_	-50	_	_	-50	_		-50	dBc/Hz
	100 Hz	_	_	-80	_	_	-80	_	_	-80	_		-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	_	-110	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
Noise	10 KHz	_	_	-120	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
	100 KHz	_	_	-120	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
	≥ 1 MHz	_	_	-130	_	_	-130	_	_	-130	_	_	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK (3)	10 KHz to 20 MHz	_	_	3	_	_	3	_	_	3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S				•			•	•		•			
Calibration block clock frequency (cal_blk_clk)	_	10		125	10	_	125	10	_	125	10	_	125	MHz

Chapter 1: Device Datasheet for Arria II DevicesSwitching Characteristics

December 2013 Altera Corporation

Arria II Device Handbook Volume 3: Device Datasheet and Addendum

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/			13			C4			C5 and I	5	C6			11!4
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_	_	_	4000	_	_	4000	_	_	4000	_	_	4000	ns
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	_	600	_	6375	600	_	3750	600		3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	_	650	_	_	650	_	_	650	_	_	650	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCIe				ı	ı	50 MHz to	1.25 GHz:	-10dB	l .	1	ı		
differential mode	XAUI					625 MI	312 MHz to Hz to 3.125 (lope				
Return loss common mode	PCle		50 MHz to 1.25 GHz: –6dB											
Rise time (2)	_	50	_	200	50	_	200	50		200	50	_	200	ps
Fall time	_	50	_	200	50	_	200	50	_	200	50	_	200	ps

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	Conditions –C3 and –I3 (1) –C4 and –I4							11-14						
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit						
	PCIe Gen1		2.5 - 3.5				MHz							
	PCIe Gen2			6 -	8			MHz						
	(OIF) CEI PHY at 4.976 Gbps					7 - 11					7 - 11			
	(OIF) CEI PHY at 6.375 Gbps	7 - 111				5 - 10								
-3 dB Bandwidth	XAUI	2 - 4				2 - 4								
	SRIO 1.25 Gbps	3 - 5.5			MHz									
	SRIO 2.5 Gbps			3 -	5.5			MHz						
	SRIO 3.125 Gbps	2 - 4			MHz									
	GIGE			2.5 -	4.5			MHz						
	SONET OC12	1.5 - 2.5			MHz									
	SONET OC48	3.5 - 6						MHz						
Transceiver-FPGA Fabric In	terface													
Interface speed	_	25 — 325 25 — 250				250	MHz							
Digital reset pulse width	_	Minimum is two parallel clock cycles					_							

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–3 shows the differential receiver input waveform.

Figure 1-3. Receiver Input Waveform

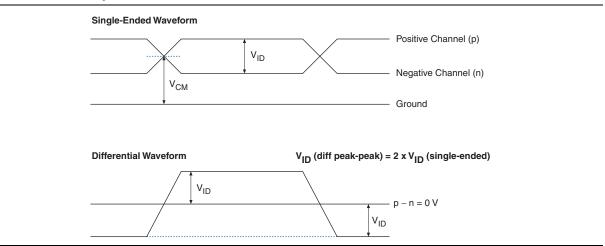


Figure 1–4 shows the transmitter output waveform.

Figure 1-4. Transmitter Output Waveform

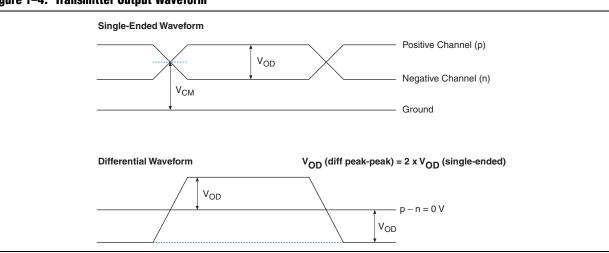


Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1–36. Typical $\mbox{V}_{\mbox{\scriptsize 0D}}$ Setting, TX Term = 85 Ω for Arria II GZ Devices

Cumbal			V _{op} Setting (mV)								
Symbol	0	1	2	3	4	5	6	7			
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%			

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

Symbol/	0		I3			C4			C5, I5	5		C6		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		> 15			> 15			> 15			> 15		UI
	Pattern = PRBS15													
	Jitter frequency = 100 KHZ		> 1.5			> 1.5	i		> 1.5			> 1.5		UI
Jitter tolerance at	Pattern = PRBS15													
2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
	Jitter frequency = 10 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
XAUI Transmit Jitt	er Generation <i>(3)</i>													
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	_		0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.17		_	0.17	_		0.17	_	_	0.17	UI
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>													
Total jitter	_		> 0.65			> 0.6	5		> 0.65	5		> 0.6	5	UI
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	i		> 8.5	l		> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
PCIe Transmit Jitt	er Generation <i>(4)</i>				•			•			•			•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	_	_	0.25	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/	0		13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>	•		•				•			•		•	•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	;		> 0.6	;		> 0.6	;	UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	<i>(9)</i>											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5)</i>								•	•		
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	_	_	0.35	UI
SRIO Receiver Jitt	er Tolerance <i>(5)</i>				I				l					1
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.3	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter	Data Rate = 1.25, 2.5, 3.125 Gbps		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI
tolerance (peak-to-peak)	Pattern = CJPAT													
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps		> 8.5			> 8.5	j		> 8.5	i		> 8.5	j	UI
	Pattern = CJPAT													
Sinusoidal jitter	Jitter frequency = 1.875 MHz													
tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1			> 0.1			> 0.1		UI
(Fig. 1)	Pattern = CJPAT													
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													
GIGE Transmit Jitt	er Generation <i>(6)</i>	•						•						•
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	_	_	0.14	_	_	0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 7 of 10)

Symbol/	0		13			C4			C5, I	5		C6		11														
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit														
SSC modulation deviation at 1.5 Gbps (G1)	Compliance pattern		5700			5700			5700			5700)	ppm														
RX differential skew at 1.5 Gbps (G1)	Compliance pattern		80			80			80			80		ps														
RX AC common mode voltage at 1.5 Gbps (G1)	Compliance pattern		150			150			150			150		mV														
Total jitter tolerance at 3.0 Gbps (G2)	Compliance pattern		> 0.65			> 0.6	5	> 0.65			> 0.65			UI														
Deterministic jitter tolerance at 3.0 Gbps (G2)	Compliance pattern		> 0.35			> 0.3	5	> 0.35			> 0.35			UI														
SSC modulation frequency at 3.0 Gbps (G2)	Compliance pattern		33			33		33			33			kHz														
SSC modulation deviation at 3.0 Gbps (G2)	Compliance pattern		5700			5700		5700			5700			ppm														
RX differential skew at 3.0 Gbps (G2)	Compliance pattern		75		75			75			75		ps															
RX AC common mode voltage at 3.0 Gbps (G2)	Compliance pattern		150			150		150			150		mV															
Total jitter tolerance at 6.0 Gbps (G3)	Compliance pattern		> 0.60		> 0.60		> 0.60		> 0.60		> 0.60 > 0.60		> 0.60		> 0.6	0	UI											
Random jitter tolerance at 6.0 Gbps (G3)	Compliance pattern		> 0.18		> 0.18		> 0.18		> 0.18		> 0.18		> 0.18		> 0.18 > 0.18		> 0.18		> 0.18		> 0.18			> 0.1	8	UI		
SSC modulation frequency at 6.0 Gbps (G3)	Compliance pattern		33		33		33 33		33		33		33		33		33 33		33 33		33 33		33			33		kHz
SSC modulation deviation at 6.0 Gbps (G3)	Compliance pattern	5700		5700		5700		5700		5700		5700 5700		5700		5700		5700 5700		5700		5700			5700)	ppm	
RX differential skew at 6.0 Gbps (G3)	Compliance pattern	30		30		30		30		30		30		30			ps											
RX AC common mode voltage at 6.0 Gbps (G3)	Compliance pattern		100		100		100		100		mV																	

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	0		13			C4			C5, I	5		C6		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Ji	tter Tolerance <i>(12)</i>								•	•				
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.55	5		> 0.5	5		> 0.55	5	UI
	Jitter frequency = 5.4 KHz		> 8.5			> 8.5			> 8.5	5		> 8.5	j	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i i		> 8.5	j	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

Symbol/	Oandille	-	-C3 and	-I3	-	-C4 and -	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		. 45			. 45		
	Pattern = PRBS15		> 15			> 15		UI
	Jitter frequency = 100 KHZ		. 1 5			> 1.5		UI
	Pattern = PRBS15		> 1.5			> 1.0		UI
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15							
	Jitter frequency = 10 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15		> 0.10			> 0.13		UI
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>							
Total jitter FC-1	Pattern = CRPAT	_		0.23	_	_	0.23	UI
Deterministic jitter FC-1	Pattern = CRPAT	_	_	0.11	_	_	0.11	UI
Total jitter FC-2	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Deterministic jitter FC-2	Pattern = CRPAT	_	_	0.2	_	_	0.2	UI
Total jitter FC-4	Pattern = CRPAT	_	_	0.52	_	_	0.52	UI
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Fibre Channel Receiver Jitter Tole	erance <i>(4)</i> , <i>(6)</i>	•						•
Deterministic jitter FC-1	Pattern = CJTPAT		> 0.37			> 0.37		UI
Random jitter FC-1	Pattern = CJTPAT		> 0.31			> 0.31		UI
Sinusoidal jitter FC-1	Fc/25000		> 1.5			> 1.5		UI
Siliusuluai jillei FG-1	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-2	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI
Siliusoluai jillei 10-2	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI
omasolaar jittor 10 4	Fc/1667		> 0.1			> 0.1		UI
XAUI Transmit Jitter Generation (7)							
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	-	_	0.17	_	_	0.17	UI
XAUI Receiver Jitter Tolerance (7)	•	•		•			
Total jitter	_		> 0.65			> 0.65		UI
Deterministic jitter	_		> 0.37			> 0.37		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Symbol/			-C3 and	–13		–14		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Jitter Tolerance	(15)			<u>I</u>				
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37	,		> 0.37		UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55	i		> 0.55		UI
Cinuacidal iittar talaranaa at 700	Jitter frequency = 5.4 KHz Pattern = CJPAT		> 8.5				UI	
Sinusoidal jitter tolerance at 768 Mbps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT	> 0.1			> 0.1			UI
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT		> 8.5			> 8.5		UI
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		UI
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT		> 8.5				UI	
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		

Notes to Table 1-41:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_R interpretability point.
- $(7) \quad \text{The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.}$
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the $V_{TX-CM-DC-ACTIVEIDLE-DELTA}$ of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46. DSP Block Performance Specifications for Arria II GX Devices (Note 1)

Mada	Resources Used			1114		
Mode	Number of Multipliers	C4	13	C5,I5	C6	Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

- (1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.
- (2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Table 1-47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 1 of 2)

Mode	Resources Used	Perfor	nance	Unit
Wide	Number of Multipliers	-3	-4	Ullit
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 x 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Cumhal	Canditions	I	3	C	4	C5	,I5	C	6	IIiA
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Clock										
f _{HSCLK_IN} (input clock frequency)—Row I/O	Clock boost factor, W = 1 to 40 (1)	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)— Column I/O	Clock boost factor, W = 1 to 40 (1)	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)-Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)- Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

Owntrol	O and Hillians		C3, I3			C4, I4		1111
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 (7)	5		717 (7)	MHz
Transmitter								
(SERDES factor, J = 3 to 10 (using dedicated SERDES) (8)	(4)	_	1250	(4)	_	1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) (5)	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–55. DPA Lock Time Specifications for Arria II Devices (Note 1), (2), (3)
--

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions <i>(4)</i>	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
raiallei napiu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
	01010101	8	32	640 data transitions

Notes to Table 1-55:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in the table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 1–5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at a data rate less than 1.25 Gbps and all the Arria II GX devices.

Figure 1–5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for All Arria II GX Devices and for Arria II GZ Devices at a Data Rate less than 1.25 Gbps

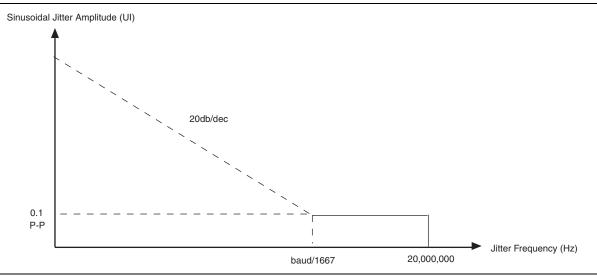


Table 1-68. Glossary (Part 3 of 4)

Letter	Subject	Definitions			
S	Subject SW (sampling window) Single-ended Voltage Referenced I/O Standard	The period of time during which the data must be valid in order to capture it correctly. The sand hold times determine the ideal strobe position within the sampling window: Timing Diagram BR Time O.5 x TCCS RSKM Sampling Window RSKM O.5 x TCCS The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input sign values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the rechanges to the new logic state. The new logic state is then maintained as long as the input stays beyond the AC threshold. approach is intended to provide predictable receiver timing in the presence of input waveforinging: Single-Ended Voltage Referenced I/O Standard Vector			
		V _{SS}			
	t _C	High-speed receiver and transmitter input and output clock period.			
т	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including $t_{\rm CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).			
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.			
	t _{DUTY}	Timing Unit Interval (TUI)			
	ווטער	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w)$			
	t _{FALL}	Signal high-to-low transition time (80-20%)			
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.			
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.			
	_	Period jitter on the dedicated clock output driven by a PLL.			
	t _{outpj_dc}	Ferrou fitter on the dedicated clock output driven by a FLE.			