

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1805
Number of Logic Elements/Cells	42959
Total RAM Bits	3517440
Number of I/O	364
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx45df29i3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$\begin{array}{c} C_{\text{CLK1}},C_{\text{CLK3}},C_{\text{CLK8}},\\ \text{and}C_{\text{CLK10}} \end{array}$	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (2)	7	28	47	kΩ
R _{PU}	before and during configuration,	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (2)	8	35	61	kΩ
тър	PU as well as user mode if the programmable pull-up resistor option is enabled.	$V_{CCIO} = 1.8 \text{ V } \pm 5\% $ (2)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V } \pm 5\% $ (2)	13	82	163	kΩ
		V _{CCIO} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$	6	19	29	kΩ
	Value of TOV also still datus	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$	6	25	42	kΩ
		$V_{CCIO} = 1.8 \text{ V } \pm 5\%$	7	35	70	kΩ
		$V_{CCIO} = 1.5 \text{ V } \pm 5\%$	8	50	112	kΩ

Notes to Table 1-18:

⁽¹⁾ All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

⁽²⁾ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

Table 1–19 lists the weak pull-up resistor values for Arria II GZ devices.

Table 1–19. Internal Weak Pull-Up Resistor for Arria II GZ Devices (Note 1), (2)

Symbol	Description	Conditions	Min	Тур	Max	Unit
	Value of the I/O pin pull-up resistor before and during	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (3)		25	_	kΩ
		$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ
R _{PU}	configuration, as well as user	$V_{CCIO} = 1.8 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ
	mode if the programmable pull-up resistor option is enabled.	$V_{CCIO} = 1.5 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ
	pull-up resistor option is enabled.	$V_{CCIO} = 1.2 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ

Notes to Table 1-19:

- (1) All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins.
- (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .
- (3) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Hot Socketing

Table 1–20 lists the hot-socketing specification for Arria II GX and GZ devices.

Table 1–20. Hot Socketing Specifications for Arria II Devices

Symbol	Description	Maximum
I _{IIOPIN(DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN(AC)}	AC current per I/O pin	8 mA (1)
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-20:

Schmitt Trigger Input

The Arria II GX device supports Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rates.

Table 1–21 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Arria II GX devices.

Table 1–21. Schmitt Trigger Input Hysteresis Specifications for Arria II GX Devices

Symbol	Description	Condition (V)	Minimum	Unit
V		V _{CCIO} = 3.3	220	mV
	Hysteresis for Schmitt trigger input	V _{CCIO} = 2.5	180	mV
V _{Schmitt}		V _{CCIO} = 1.8	110	mV
		V _{CCIO} = 1.5	70	mV

⁽¹⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which "C" is I/O pin capacitance and "dv/dt" is slew rate.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0 1111		13			C4			C5 and I5	5	C6			
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCle	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	%		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	_	-50	_	_	-50	_	_	-50	_		-50	dBc/Hz
	100 Hz	_	_	-80	_	_	-80	_	_	-80	_		-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	_	-110	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
Noise	10 KHz	_	_	-120	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
	100 KHz	_	_	-120	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
	≥ 1 MHz	_	_	-130	_	_	-130	_	_	-130	_	_	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK (3)	10 KHz to 20 MHz	_	_	3	_	_	3	_	_	3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S				•			•	•		•			
Calibration block clock frequency (cal_blk_clk)	_	10		125	10	_	125	10	_	125	10	_	125	MHz

Chapter 1: Device Datasheet for Arria II DevicesSwitching Characteristics

Chapter 1: Device Datasheet for Arria II Devices
Switching Characteristics

December 2013 Altera Corporation

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Symbol/	Condition	13				C4			C5 and I5			C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100	_	_	mV
V	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
V _{ICM}	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	$100-\Omega$ setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCle					·		50	MHz to 1.2	25 GHz: –10d	dB			•
differential mode	XAUI							100	MHz to 2	.5 GHz: –10	dB			
Return loss	PCle							50	MHz to 1.	25 GHz: –6d	В			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	В			
Programmable PPM detector (8)	_						62.5, 100, 1 250, 300, 500							ppm
Run length	_	_	80	_	_	80	_	_	80	_	_	80	_	UI
Programmable equalization	_	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time	_	_	_	75	_	_	75	_	_	75	_	_	75	μs
CDR minimum T1b (10)	_	15			15			15			15			μѕ

December 2013 Altera Corporation

Arria II Device Handbook Volume 3: Device Datasheet and Addendum

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/			13			C4			C5 and I	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_	_	_	4000	_	_	4000	_	_	4000	_	_	4000	ns
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	_	600	_	6375	600	_	3750	600		3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	_	650	_	_	650	_	_	650	_	_	650	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCIe				ı	ı	50 MHz to	1.25 GHz:	-10dB	l .	1	ı		
differential mode	XAUI		312 MHz to 625 MHz: -10dB 625 MHz to 3.125 GHz: -10dB/decade slope											
Return loss common mode	PCle		50 MHz to 1.25 GHz: -6dB											
Rise time (2)	_	50	_	200	50	_	200	50		200	50	_	200	ps
Fall time	_	50	_	200	50	_	200	50	_	200	50	_	200	ps

Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 1 of 5)

Symbol/		_	C3 and –I3	(1)		-C4 and -	14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock			•		•	•		
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LVI	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	_	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50	_	325	MHz
Absolute V_{MAX} for a REFCLK pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a REFCLK pin	_	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)	_	_	_	0.2	_	—	0.2	UI
Duty cycle	_	45		55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCle	_	0 to -0.5%		_	0 to -0.5%		
On-chip termination resistors	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz	_	_	-50	_	_	-50	dBc/Hz
	100 Hz	_	_	-80	_	_	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz			-110		_	-110	dBc/Hz
Noise	10 KHz		_	-120	_		-120	dBc/Hz
	100 KHz	_	_	-120	_	_	-120	dBc/Hz
	≥ 1 MHz	_		-130	_		-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK (3)	10 KHz to 20 MHz	_	_	3	_	_	3	ps
R _{REF}	_	_	2000 ± 1%	_		2000 ± 1%		Ω

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	O a malistica ma	-(C3 and –I3	(1)		Ilmit				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit		
	PCIe Gen1	2.5 - 3.5								
	PCIe Gen2			6 -	8			MHz		
	(OIF) CEI PHY at 4.976 Gbps			7 -	11			MHz		
	(OIF) CEI PHY at 6.375 Gbps	5 - 10								
-3 dB Bandwidth	XAUI	2 - 4								
	SRIO 1.25 Gbps	3 - 5.5								
	SRIO 2.5 Gbps	3 - 5.5								
	SRIO 3.125 Gbps	2 - 4								
	GIGE		2.5 - 4.5							
	SONET OC12			1.5 -	2.5			MHz		
	SONET OC48			3.5	- 6			MHz		
Transceiver-FPGA Fabric In	terface									
Interface speed	_	25 — 325 25 — 250					MHz			
Digital reset pulse width	_	Minimum is two parallel clock cycles						_		

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–37 lists the typical V_{OD} for TX term that equals $100~\Omega$ for Arria II GX and GZ devices.

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Quartus II Setting	V _{op} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Table 1-38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Arria II GX	Arria II GX (Quartus II Software) VOD Setting										
(Quartus II Software) First Post Tap Setting	1	2	4	5	6	7	Unit				
0 (off)	0	0	0	0	0	0	_				
1	0.7	0	0	0	0	0	dB				
2	2.7	1.2	0.3	0	0	0	dB				
3	4.9	2.4	1.2	0.8	0.5	0.2	dB				
4	7.5	3.8	2.1	1.6	1.2	0.6	dB				
5	_	5.3	3.1	2.4	1.8	1.1	dB				
6	_	7	4.3	3.3	2.7	1.7	dB				

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

Symbol/	Conditions	-	-C3 and	-l3		-14	II.a.i.A	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5	I	> 8.5			UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			UI		
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1		UI
PCIe Transmit Jitter Generation	(8)							
Total jitter at 2.5 Gbps (Gen1)—x1, x4, and x8	Compliance pattern	_		0.25	_	_	0.25	UI
Total jitter at 5 Gbps (Gen2)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	_	UI
PCle Receiver Jitter Tolerance (8)							
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6		UI
Total jitter at 5 Gbps (Gen2)	Compliance pattern	N	ot suppo	rted	N	ot suppo	rted	UI
PCIe (Gen 1) Electrical Idle Dete	ct Threshold							
V _{RX-IDLE-DETDIFFp-p} (9)	Compliance pattern	65		175	65		175	UI
SRIO Transmit Jitter Generation	(10)							
Deterministic jitter	Data rate = 1.25, 2.5, 3.125 Gbps			0.17			0.17	UI
(peak-to-peak)	Pattern = CJPAT			0.17			0.17	UI
Total jitter (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	UI
SRIO Receiver Jitter Tolerance ((10)	I.						
Deterministic jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	> 0.37 > 0.37					UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55	i	> 0.55			UI
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	> 0.1		> 0.1			UI	
GIGE Transmit Jitter Generation	(11)							
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Symbol/		-C3 and -I3				–14	U-24	
Description	Conditions	Min Typ		Max	Min	Typ Max		- Unit
OBSAI Receiver Jitter Tolerance	(15)			<u>I</u>				
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37		
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55	i		> 0.55		
Sinusoidal jitter tolerance at 768 Mbps	Jitter frequency = 5.4 KHz Pattern = CJPAT	> 8.5			> 8.5			UI
	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		UI
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT	> 8.5			> 8.5			UI
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT	> 0.1		> 0.1			UI	
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT	> 8.5		> 8.5			UI	
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1		> 0.1 > 0.1		UI		

Notes to Table 1-41:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_R interpretability point.
- $(7) \quad \text{The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.}$
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the $V_{TX-CM-DC-ACTIVEIDLE-DELTA}$ of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1-42 lists the clock tree specifications for Arria II GX devices.

Table 1-42. Clock Tree Performance for Arria II GX Devices

Clock Network	Performance							
	13, C4	C5,I5	C6	Unit				
GCLK and RCLK	500	500	400	MHz				
PCLK	420	350	280	MHz				

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1-43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	llnit		
GIUCK NELWURK	–C3 and –I3	–C4 and –I4	Unit	
GCLK and RCLK	700	500	MHz	
PCLK	500	450	MHz	

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-4 Speed Grade)	5	_	670 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f _{VCO}	PLL VCO operating Range (2)	600	_	1,400	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
f _{EINDUTY}	External feedback clock input duty cycle	40	_	60	%
t _{INCCJ} (3),	Input clock cycle-to-cycle jitter (Frequency ≥ 100 MHz)	_	_	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency ≤ 100 MHz)	_	_	±750	ps (p-p)

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	_	0.3	_	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	_	1.5	_	MHz
	PLL closed-loop high bandwidth (7)	_	4	_	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_		±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10		_	ns
+ (2) (4)	Input clock cycle to cycle jitter (F _{REF} ≥ 100 MHz)	_		0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle to cycle jitter (F _{REF} < 100 MHz)	_		±750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{OUTPJ_DC} (5)	Period Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
± (E)	Cycle to Cycle Jitter for dedicated clock output $(F_{OUT} \ge 100 \text{ MHz})$	_	_	175	ps (p-p)
t _{OUTCCJ_DC} (5)	Cycle to Cycle Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
t _{OUTPJ_IO} (5),	Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Period Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{OUTCCJ_IO} (5),	Cycle to Cycle Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle to Cycle Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{CASC_OUTPJ_DC}	Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} \ge 100 MHz)$	_	_	250	ps (p-p)
(5), (6)	Period Jitter for dedicated clock output in cascaded PLLs $(F_{OUT} < 100MHz)$	_	_	25	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for duration of 100 us	_	_	±10	%

Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O F_{MAX} or F_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- $(6) \quad \hbox{The cascaded PLL specification is only applicable with the following condition:}$
 - a. Upstream PLL: $0.59 \text{ Mhz} \leq \text{Upstream PLL BW} < 1 \text{ MHz}$
 - b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46. DSP Block Performance Specifications for Arria II GX Devices (Note 1)

Mada	Resources Used		Perfor	mance		1114
Mode	Number of Multipliers	C4	13	C5,I5	C6	Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

- (1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.
- (2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Table 1-47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 1 of 2)

Mode	Resources Used	Pertormance					
Wide	Number of Multipliers	-3	-4	- Unit			
9 × 9-bit multiplier	1	460	400	MHz			
12 × 12-bit multiplier	1	500	440	MHz			
18 × 18-bit multiplier	1	550	480	MHz			
36 × 36-bit multiplier	1	440	380	MHz			
18 × 18-bit multiply accumulator	4	440	380	MHz			
18 × 18-bit multiply adder	4	470	410	MHz			
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz			
18 x 18-bit multiply adder with loopback (2)	2	350	310	MHz			
36-bit shift (32-bit data)	1	440	380	MHz			

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 3 of 4)

Ohal	Ocuditions	I	3	C	34	C5	,I5	C	6	11
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{tx_jitter} (4)	True LVDS with dedicated SERDES (data rate 600–1,250 Mbps)	_	175	_	175	_	225	_	300	ps
	True LVDS with dedicated SERDES (data rate < 600 Mbps)	_	0.105	_	0.105	_	0.135	-	0.18	UI
	True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate 600 – 945 Mbps)		260	ı	260	_	300	ı	350	ps
	True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate < 600 Mbps)	_	— 0.16	_	0.16	_	0.18	_	0.21	UI
t _{TX_DCD}	True LVDS and emulated LVDS_E_3R	45	55	45	55	45	55	45	55	%
t _{RISE} and t _{FALL}	True LVDS and emulated LVDS_E_3R	_	200	_	200	_	225	_	250	ps
TOOS	True LVDS (5)	_	150	_	150	_	175	_	200	ps
TCCS	Emulated LVDS_E_3R	_	200	_	200	_	250	_	300	ps
Receiver (6)			•		•		•		·	•
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	1250	150	1250	150	1050	150	840	Mbps

Table 1-53.	High-Speed I/O Specifications for Arria II GX Devices	(Part 4 of 4)
-------------	---	---------------

Symbol	Conditions	I 3		C4		C5,I5		C6		Ilmit
	Conuntions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300	_	300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)	_	300	_	300	_	350	_	400	ps

Notes to Table 1-53:

- (1) $f_{HSCLK_IN} = f_{HSDR} / W$. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.
- (2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.
- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 1 of 3)

Cumbal	Conditions	C3, I3			C4, I4			11
Symbol		Min	Тур	Max	Min	Тур	Max	Unit
Clock								
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9)	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10)	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

O	Conditions -	C3, I3			C4, I4			
Symbol		Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 (7)	5	_	717 (7)	MHz
Transmitter								
(SERDES factor, $J = 3$ to 10 (using dedicated SERDES) (β)	(4)	_	1250	(4)	_	1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) (5)	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–57. External Memory Interface Specifications for Arria II GX Devices (Part 2 of 2)

Frequency	requency Frequency Range (MHz)				DQS Delay	Number of	
Mode	C4	13, C5, 15	C6	(°)	Buffer Mode (1)	Delay Chains	
5	270-410	270-380	270-320	36	High	10	
6	320-450	320-410	320-370	45	High	8	

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Table 1–58. DLL Frequency Range Specifications for Arria II GZ Devices

Funnament Made	Frequency Range (MHz)		Ausilahla Dhaaa Chiff	DQS Delay	Number of	
Frequency Mode	-3	-4	Available Phase Shift	Buffer Mode (1)	Delay Chains	
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16	
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12	
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10	
3	180-260	180-240	45°, 90°,135°, 180°	Low	8	
4	240-320	240-290	30°, 60°, 90°, 120°	High	12	
5	290-380	290-360	36°, 72°, 108°, 144°	High	10	
6	360-450	360-450	45°, 90°, 135°, 180°	High	8	
7	470-630	470-590	60°, 120°, 180°, 240°	High	6	

Note to Table 1-58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1-59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
I3, C5, I5	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

- (1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.
- (2) The typical value equals the average of the minimum and maximum values.
- (3) The delay settings are linear.

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions
A, B, C,	Differential I/O Standards	Single-Ended Waveform Positive Channel (p) = V _{IH} Negative Channel (n) = V _{IL} Ground Differential Waveform p - n = 0 V
D		Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground
		Differential Waveform $ V_{OD} $ $ p - n = 0 V $
	f _{HSCLK}	Left/Right PLL input clock frequency.
E, F	f _{HSDR}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
Г	f _{HSDRDPA}	High-speed I/O block: Maximum/minimum LVDS data transfer rate $(f_{HSDRDPA} = 1/TUI)$, DPA.

Table 1-68. Glossary (Part 2 of 4)

Letter	Subject	Definitions	
	J	High-speed I/O block: Deserialization factor (width of parallel data bus). JTAG Timing Specifications:	
G, H, I, J	JTAG Timing Specifications	TDI TDI t_{JPZX} t_{JPZX} TDO t_{JPZX} t_{JPZX}	
		PLL Specification parameters: Diagram of PLL Specifications (1) CLIKOUT Pins	
K, L, M, N, O,	PLL Specifications	CLK Core Clock Reconfigurable in User Mode External Feedback	
		Notes: (1) CoreClock can only be fed by dedicated clock input pins or PLL outputs. (2) This is the VCO post-scale counter K.	
Q, R	R _L	Receiver differential input discrete resistor (external to the Arria II device).	

Table 1–69. Document Revision History (Part 2 of 2)

Date	Version	Changes
		Added Arria II GZ information.
		■ Added Table 1–61 with Arria II GX information.
December 2010	4.0	■ Updated Table 1–1, Table 1–2, Table 1–5, Table 1–6, Table 1–7, Table 1–11, Table 1–35, Table 1–37, Table 1–40, Table 1–42, Table 1–44, Table 1–45, Table 1–57, Table 1–61, and Table 1–63.
		■ Updated Figure 1–5.
		Updated for the Quartus II version 10.0 release.
		Updated the first paragraph for searchability.
		Minor text edits.
		■ Updated Table 1–1, Table 1–4, Table 1–16, Table 1–19, Table 1–21, Table 1–23, Table 1–25, Table 1–26, Table 1–30, and Table 1–35
		■ Added Table 1–27 and Table 1–29.
July 2010	3.0	Added I3 speed grade information to Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
July 2010	3.0	Updated the "Operating Conditions" section.
		Removed "Preliminary" from Table 1–19, Table 1–21, Table 1–22, Table 1–23, Table 1–24, Table 1–25, Table 1–26, Table 1–28, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Figure 1–4.
		■ Minor text edits.
		Updated for the Quartus II version 9.1 SP2 release:
March 2010	2.3	■ Updated Table 1–3, Table 1–7, Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25 and Table 1–33.
		Updated "Recommended Operating Conditions" section.
		Minor text edits.
February 2010	2.2	Updated Table 1–19.
		Updated for Arria II GX v9.1 SP1 release:
February 2010	2.1	■ Updated Table 1–19, Table 1–23, Table 1–28, Table 1–30, and Table 1–33.
Tobraary 2010	2.1	■ Added Figure 1–5.
		Minor text edits.
		Updated for Arria II GX v9.1 release:
		■ Updated Table 1–1, Table 1–4, Table 1–13, Table 1–14, Table 1–19, Table 1–15, Table 1–22, Table 1–24, and Table 1–28.
November 2009	2.0	■ Added Table 1–6 and Table 1–33.
		■ Added "Bus Hold" on page 1–5.
		Added "IOE Programmable Delay" section.
		Minor text edit.
luna 2000	1.0	■ Updated Table 1–1, Table 1–3, Table 1–7, Table 1–8, Table 1–18, Table 1–23, Table 1–25, Table 1–26, Table 1–29, Table 1–30, Table 1–31, Table 1–32, and Table 1–33.
June 2009	1.2	■ Added Table 1–32.
		■ Updated Equation 1–1.
March 2009	1.1	Added "I/O Timing" section.
February 2009	1.0	Initial release.