E·XFL

Intel - EP2AGX65CU17C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2530
Number of Logic Elements/Cells	60214
Total RAM Bits	5371904
Number of I/O	156
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	358-LFBGA, FCBGA
Supplier Device Package	358-UBGA, FCBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx65cu17c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1–1. Absolute Maximum Ratings for Arria II GX Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Supplies power for the configuration RAM bits	-0.5	1.8	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V_{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA
V _{CCA}	Supplies power to the transceiver PMA regulator		3.75	V
V_{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.21	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Power supply to the configuration RAM bits	-0.5	1.8	V
V _{CCPGM}	Supplies power to the configuration pins	-0.5	1.35 1.8 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Supplies battery back-up power for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V _{CC_CLKIN}	Supplies power to the differential clock input	-0.5	3.75	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA

Symbol	Description	Condition Minimum		Typical	Maximum	Unit
+	Power Supply Pamp time	Normal POR	0.05		100	ms
t _{RAMP}	Power Supply Ramp time	Fast POR	0.05		4	ms

Notes to Table 1–5:

(1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.

(2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .

(4) V_{CCI0} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1–6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
V (2)	I/O pre-driver (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	—	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	—	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	—	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	_	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	—	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2		3.3	V
VI	DC input voltage	_	-0.5	—	3.6	V
V ₀	Output voltage	_	0	—	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	_	0.05/0.075		0 1 5 /0 005	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.85/2.375	3.0/2.5 (4)	3.15/2.625	v
V _{CCHIP_L}	Transceiver HIP digital power (left side)	-	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	—	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	— —	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	—	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	_	1.05	1.1	1.15	V

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Ormula d	Description	Opendikione (U)	Resistance	Tolerance	11	
Symbol	Description	Conditions (V)	C3,I3	C4,14	Unit	
25-Ω R _s 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%	
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%	
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%	

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

I/O Standard Specifications

Table 1–22 through Table 1–35 list input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by the Arria II device family. They also show the Arria II device family I/O standard specifications. V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL}, respectively.

For an explanation of terms used in Table 1–22 through Table 1–35, refer to "Glossary" on page 1–74.

Table 1–22 lists the single-ended I/O standards for Arria II GX devices.

I/O Standard	V _{CCIO} (V)		VII	(V)	VIH	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{oh}	
i/o Stailuaru	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÅ)
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} -0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCI0} + 0.3	0.4	2	1	-1
1.8 V LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCI0}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCI0}	0.75 × V _{CCIO}	2	-2
3.0-V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCI0} + 0.3	0.1 × V _{CCIO}	$0.9 \times V_{CCIO}$	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15		0.35 × V _{CCIO}	$0.5 \times V_{CCIO}$	V _{CCI0} + 0.3	0.1 × V _{CCIO}	$0.9 \times V_{CCIO}$	1.5	-0.5

Table 1–22. Single-Ended I/O Standards for Arria II GX Devices

Table 1–23 lists the single-ended I/O standards for Arria II GZ devices.

Table 1-23	. Single-Ended I/O Standards for Arria II GZ Devices	(Part 1 of 2)
------------	--	---------------

1/0 Chandard	V _{CCIO} (V)			V _{IL} (V)		V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{oh}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 × V _{CCI0}	0.65 × V _{CCI0}	V _{CCI0} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCI0}	2	-2

P

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1-34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/			13			C4			C5 and I	5	C6			
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								÷	•	•	•			
Supported I/O Standards		1.2-V PCML, 1.5-V PCML, 2.5-V PCML, Differential LVPECL, LVDS, and HCSL												
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V _{MAX} for a REFCLK pin	_	—	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V _{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	—	—	—	0.2			0.2		—	0.2			0.2	UI
Duty cycle	—	45	—	55	45	_	55	45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Ś	Ω
Switching Characteristics	hapter 1: Device Datasheet for Arria II Devices
hin	ter
дC	
hai	Be
act	٧ic
eri	6
stic	ata
S	she
	ĕt
	đ
	Ar
	ria
	Ξ
	Dev
	ic
	22

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4			C5 and I5	i		C6		Unit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to 0.5%	_	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100			100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	0		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	—	-50		—	-50		—	-50	_	—	-50	dBc/Hz
	100 Hz	_	—	-80	_	—	-80	—	—	-80	_	—	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	—	-110		—	-110		—	-110	_	—	-110	dBc/Hz
Noise	10 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	100 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	\geq 1 MHz	_	—	-130		—	-130		—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3	_		3	_		3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S													
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Š	₽
vitch	apt
iing	ıpter 1
C	••
Switching Characteristics	1: Device C
eri	e
sti	ă
S	as
	he
	et -
	Datasheet for Arria II Devices
	Þ
	Ę.
	=
	ev.
	Ĉ
	õ

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/	0		13			C4			C5 and IS	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_		_	4000	_	_	4000			4000	_	_	4000	ns
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3		_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6		_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	—	600	—	6375	600		3750	600	—	3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	—	650	_	_	650	_	_	650	—	_	650		mV
Differential on-chip termination resistors	100–Ω setting		100		_	100			100		_	100		Ω
Return loss	PCIe		1	1			50 MHz to	1.25 GHz:	-10dB					
differential mode	XAUI		312 MHz to 625 MHz: –10dB 625 MHz to 3.125 GHz: –10dB/decade slope											
Return loss common mode	PCIe		50 MHz to 1.25 GHz: -6dB											
Rise time (2)	—	50	—	200	50		200	50	—	200	50	—	200	ps
Fall time		50		200	50	_	200	50		200	50	_	200	ps

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/	Condition		13			C4			C5 and I5	i		C6		Unit
Description	Conuncion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII
Digital reset pulse width	—			•		М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1-34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Symbol/	0		13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		> 15			> 15			> 15			> 15		UI
	Pattern = PRBS15													
	Jitter frequency = 100 KHZ		> 1.5			> 1.5	5		> 1.5			> 1.5	5	UI
Jitter tolerance at	Pattern = PRBS15													
2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.1	5		> 0.1	5		> 0.1	5	UI
	Pattern = PRBS15													
	Jitter frequency = 10 MHz		> 0.15			> 0.15			> 0.15			> 0.1	5	UI
	Pattern = PRBS15													
XAUI Transmit Jitt	er Generation <i>(3)</i>													
Total jitter at 3.125 Gbps	Pattern = CJPAT		_	0.3	_		0.3	_	_	0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT			0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>													
Total jitter			> 0.65			> 0.6	5		> 0.6	5		> 0.6	5	UI
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	;		> 8.5			> 8.5	;	UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
PCIe Transmit Jitt	er Generation <i>(4)</i>													
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		_	0.25	_		0.25	_		0.25			0.25	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

Symbol/	Oanditiana		13			C4			C5, I	5		C6		11 14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SDI Transmitter J	itter Generation <i>(8)</i>		• •	-	-									
Alignment jitter	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2			0.2		_	0.2		_	0.2			UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3		_	0.3	_	_	0.3	_	_	0.3			UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>													
	Jitter frequency = 15 KHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 2			> 2			> 2			> 2		UI
	Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3	i		> 0.3			> 0.3		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3			> 0.3			> 0.3		UI

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/	O and l'it's and		-C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)		-					
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	;		> 0.66		UI
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_		UI
HiGig Receiver Jitter Tolerance								
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65	i	_	_		UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_		0.3		_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce		•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.67	5	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.98	8	-	_		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Oendikiene		-C3 and	-13	-	-C4 and ·	-14	11 14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Jitter Tolerance	(15)							
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37		UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55	i		> 0.55		UI
Cinusoidal iittar talaranaa at 769	Jitter frequency = 5.4 KHz Pattern = CJPAT		> 8.5			> 8.5		UI
Sinusoidal jitter tolerance at 768 - Abps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT	> 0.1					UI	
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT	> 8.5					UI	
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		UI
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT		> 8.5			> 8.5		UI
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1				UI		

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Symbol	Description	Min	Тур	Max	Unit
	Output frequency for internal global or regional clock (-4 Speed Grade)	_	_	500	MHz
f _{out}	Output frequency for internal global or regional clock (–5 Speed Grade)	_	_	500	MHz
	Output frequency for internal global or regional clock (–6 Speed Grade)	_	_	400	MHz
	Output frequency for external clock output (–4 Speed Grade)	—		670 <i>(5)</i>	MHz
f _{OUT_EXT}	Output frequency for external clock output (–5 Speed Grade)	_		622 (5)	MHz
	Output frequency for external clock output (–6 Speed Grade)	—		500 (5)	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
1	Dedicated clock output period jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		300	ps (p–p)
t _{outpj_dc}	Dedicated clock output period jitter (f _{OUT} < 100 MHz)	_		30	mUI (p–p)
1	Dedicated clock output cycle-to-cycle jitter ($f_{OUT} \ge 100 \text{ MHz}$)	—		300	ps (p–p)
t _{outccj_dc}	Dedicated clock output cycle-to-cycle jitter (f _{OUT} < 100 MHz)	_		30	mUI (p–p)
	Regular I/O clock output period jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		650	ps (p–p)
f _{outpj_io}	Regular I/O clock output period jitter (f _{OUT} < 100 MHz)	—		65	mUI (p–p)
£	Regular I/O clock output cycle-to-cycle jitter ($f_{OUT} \ge 100 \text{ MHz}$)	_		650	ps (p–p)
f _{outccj_i0}	Regular I/O clock output cycle-to-cycle jitter (f _{OUT} < 100 MHz)	—		65	mUI (p–p)
t _{CONFIGPLL}	Time required to reconfigure PLL scan chains	_	3.5	_	SCANCLK cycles
t _{configphase}	Time required to reconfigure phase shift	_	1	_	SCANCLK cycles
f _{scanclk}	SCANCLK frequency	—		100	MHz
t _{LOCK}	Time required to lock from end of device configuration	—		1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	—	0.3		MHz
f _{CL B W}	PLL closed-loop medium bandwidth	_	1.5	—	MHz
	PLL closed-loop high bandwidth	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	—	±50	ps
t _{ARESET}	Minimum pulse width on areset signal	10	—	—	ns

Table 1–44. PLL Specifications for Arria II GX Devices (Part 2 of 3)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	<u> </u>	0.3	_	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	—	MHz
	PLL closed-loop high bandwidth (7)	_	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—		±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10		—	ns
+ (2) (1)	Input clock cycle to cycle jitter ($F_{REF} \geq 100~MHz)$	—		0.15	UI (p-p)
t _{INCCJ} (3), (4)	Input clock cycle to cycle jitter (F _{REF} < 100 MHz)	—		±750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
t _{outpj_dc} (5)	Period Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_		17.5	mUI (p-p)
L (7)	Cycle to Cycle Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_		175	ps (p-p)
t _{outccj_dc} (5)	Cycle to Cycle Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
t _{outpj_10} <i>(5)</i> ,	Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Period Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{outccj_10} <i>(5)</i> ,	Cycle to Cycle Jitter for clock output on regular I/O $(F_{\text{OUT}} \geq 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle to Cycle Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100MHz$)	_	_	250	ps (p-p)
(5), (6)	Period Jitter for dedicated clock output in cascaded PLLs $(F_{0UT} < 100MHz)$	_	_	25	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for duration of 100 us	-	_	±10	%

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O F_{MAX} or F_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- (6) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Ormshall	Oanditiana		3	C	4	C5	, I 5	(6	11
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Clock				·		<u>.</u>	-	<u>.</u>	-	
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

Symbol	Conditions	13		C4		C5,I5		C6		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 (7)	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300		300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000		10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300	_	300		350	_	400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Symbol	Conditions	C3, I3			C4, I4			
		Min	Тур	Мах	Min	Тур	Мах	Unit
Clock		<u>.</u>	-			<u>.</u>		
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(9)</i>	Clock boost factor W = 1 to 40 <i>(3)</i>	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(10)</i>	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

0l.al	O		C3, I3		C4, 14			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit
f _{HSCLK_OUT} (output clock frequency)				717 (7)	5		717 <i>(7)</i>	MHz
Transmitter								
	SERDES factor, J = 3 to 10 (using dedicated SERDES) (8)	(4)		1250	(4)		1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)		(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) <i>(5)</i>	SERDES factor J = 4	(4)	_	1152	(4)		800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)		200	(4)	_	200	Mbps
t _{x Jitter}	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_		0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps		_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY} TX output clock du cycle for both True and emulated differential I/O standards		45	50	55	45	50	55	%

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions <i>(4)</i>	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
Fatallet naplu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
MISCEIIANEOUS	01010101	8	32	640 data transitions

Notes to Table 1-55:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in the table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 1–5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at a data rate less than 1.25 Gbps and all the Arria II GX devices.

Figure 1–5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for All Arria II GX Devices and for Arria II GZ Devices at a Data Rate less than 1.25 Gbps

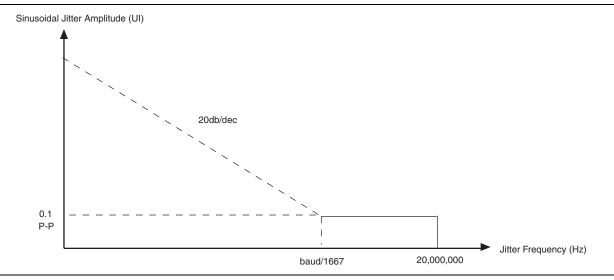


Figure 1–6 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Figure 1–6. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for Arria II GZ Devices at a 1.25 Gbps Data Rate



Table 1–56 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Table 1–56. LVDS Soft-CDR/DPA Sinusoidal J	itter Mask Values for Arria II GZ Devices at
1.25 Gbps Data Rate	

Jitter Freq	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

External Memory Interface Specifications

 For the maximum clock rate supported for Arria II GX and GZ device family, refer to the External Memory Interface Spec Estimator page on the Altera website.

Table 1–57 lists the external memory interface specifications for Arria II GX devices.

Table 1–57. External Memory Interface Specifications for Arria II GX Devices (Part 1 of 2)

Frequency	ency Frequency Range (MHz) Re		Resolution	DQS Delay	Number of	
Mode	C4	13, C5, 15	C6	(°)	Buffer Mode <i>(1)</i>	Delay Chains
0	90-140	90-130	90-110	22.5	Low	16
1	110-180	110-170	110-150	30	Low	12
2	140-220	140-210	140-180	36	Low	10
3	170-270	170-260	170-220	45	Low	8
4	220-340	220-310	220-270	30	High	12

Table 1-69.	Document	Revision	Historv	(Part 2 of 2)
				(

Date	Version	Changes
		 Added Arria II GZ information.
		 Added Table 1–61 with Arria II GX information.
December 2010	4.0	 Updated Table 1–1, Table 1–2, Table 1–5, Table 1–6, Table 1–7, Table 1–11, Table 1–35, Table 1–37, Table 1–40, Table 1–42, Table 1–44, Table 1–45, Table 1–57, Table 1–61, and Table 1–63.
		 Updated Figure 1–5.
		 Updated for the Quartus II version 10.0 release.
		 Updated the first paragraph for searchability.
		 Minor text edits.
		 Updated Table 1–1, Table 1–4, Table 1–16, Table 1–19, Table 1–21, Table 1–23, Table 1–25, Table 1–26, Table 1–30, and Table 1–35
		 Added Table 1–27 and Table 1–29.
July 2010	2.0	 Added I3 speed grade information to Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Table 1–35.
July 2010	3.0	 Updated the "Operating Conditions" section.
		 Removed "Preliminary" from Table 1–19, Table 1–21, Table 1–22, Table 1–23, Table 1–24, Table 1–25, Table 1–26, Table 1–28, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Figure 1–4.
		 Minor text edits.
		Updated for the Quartus II version 9.1 SP2 release:
March 2010	2.3	 Updated Table 1–3, Table 1–7, Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25 and Table 1–33.
		 Updated "Recommended Operating Conditions" section.
		 Minor text edits.
February 2010	2.2	Updated Table 1–19.
		Updated for Arria II GX v9.1 SP1 release:
February 2010	2.1	■ Updated Table 1–19, Table 1–23, Table 1–28, Table 1–30, and Table 1–33.
	2.1	Added Figure 1–5.
		 Minor text edits.
		Updated for Arria II GX v9.1 release:
		 Updated Table 1–1, Table 1–4, Table 1–13, Table 1–14, Table 1–19, Table 1–15, Table 1–22, Table 1–24, and Table 1–28.
November 2009	2.0	Added Table 1–6 and Table 1–33.
		Added "Bus Hold" on page 1–5.
		 Added "IOE Programmable Delay" section.
		Minor text edit.
lune 2000	10	 Updated Table 1–1, Table 1–3, Table 1–7, Table 1–8, Table 1–18, Table 1–23, Table 1–25, Table 1–26, Table 1–29, Table 1–30, Table 1–31, Table 1–32, and Table 1–33.
June 2009	1.2	Added Table 1–32.
		■ Updated Equation 1–1.
March 2009	1.1	Added "I/O Timing" section.
February 2009	1.0	Initial release.