E·XFL

Intel - EP2AGX65CU17C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2530
Number of Logic Elements/Cells	60214
Total RAM Bits	5371904
Number of I/O	156
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	358-LFBGA, FCBGA
Supplier Device Package	358-UBGA, FCBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx65cu17c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1–10 lists the bus hold specifications for Arria II GZ devices.

			V _{CC10} (V)										
Parameter	Symbol	Cond.	1	.2	1	.5	1	.8	2	.5	3	.0	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μA
Bus-hold High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μΑ
Bus-hold Low overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}	_	120	_	160	_	200	_	300	_	500	μΑ
Bus-hold High overdrive current	I _{odh}	OV < V _{IN} < V _{CCIO}	_	-120	_	-160	_	-200	_	-300	_	-500	μA
Bus-hold trip point	V _{TRIP}		0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

Table 1–10. Bus Hold Parameters for Arria II GZ Devices

OCT Specifications

Table 1–11 lists the Arria II GX device and differential OCT with and without calibration accuracy.

Symbol	Description	Conditions (1/)	Calibration	1 Accuracy	11
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit
25-Ω R _S 3.0, 2.5	25-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
50-Ω R _S 3.0, 2.5	50- Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
25-Ω R _S 1.8	25-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
50-Ω R _S 1.8	50- Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
25-Ω R _S 1.5, 1.2	25-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
50-Ω R _S 1.5, 1.2	50-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%

Table 1-19 lists the weak pull-up resistor values for Arria II GZ devices.

Table 1–19. Internal Weak Pull-Up Resistor for Arria II GZ Devices ((Note :	1),	(2)
--	---------	-----	-----

Symbol	Description	Conditions	Min	Тур	Max	Unit
R _{PU}	Value of the I/O pin pull-up resistor before and during configuration, as well as user mode if the programmable pull-up resistor option is enabled.	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (3)	_	25		kΩ
		$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (3)	_	25	_	kΩ
		$V_{CCIO} = 1.8 V \pm 5\%$ (3)		25		kΩ
		$V_{CCIO} = 1.5 V \pm 5\%$ (3)	_	25	_	kΩ
		$V_{CCIO} = 1.2 V \pm 5\%$ (3)		25		kΩ

Notes to Table 1-19:

(1) All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins.

(2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .

(3) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Hot Socketing

Table 1–20 lists the hot-socketing specification for Arria II GX and GZ devices.

 Table 1–20. Hot Socketing Specifications for Arria II Devices

Symbol	Description	Maximum
I _{IIOPIN(DC)}	DC current per I/O pin	300 μA
I _{IOPIN(AC)}	AC current per I/O pin	8 mA <i>(1)</i>
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-20:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |I_{IOPIN}| = C dv/dt, in which "C" is I/O pin capacitance and "dv/dt" is slew rate.

Schmitt Trigger Input

The Arria II GX device supports Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rates.

Table 1–21 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Arria II GX devices.

Table 1–21. Schmitt Trigger Input Hysteresis Specifications for Arria II GX Devices

Symbol	Description	Condition (V)	Minimum	Unit
V _{Schmitt}		V _{CCI0} = 3.3	220	mV
	Hysteresis for Schmitt trigger input	V _{CCI0} = 2.5	180	mV
		V _{CCI0} = 1.8	110	mV
		V _{CCIO} = 1.5	70	mV

Switching	Chapter 1
Characteris	: Device D:
stics	atasheet fo
	r Arria II
	Device

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4			C5 and I	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to -0.5%		_	0 to -0.5%		_	0 to 0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	_	100	_	_	100		Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	5%		1100 ± 59	6		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	—	—	-50	—	—	-50	—	—	-50	—	—	-50	dBc/Hz
	100 Hz	—	—	-80	—	—	-80	—	—	-80	—	—	-80	dBc/Hz
Transmitter	1 KHz	—	_	-110	_	—	-110	—	—	-110	_	_	-110	dBc/Hz
Noise	10 KHz	—	—	-120	—	—	-120	—	—	-120	—	—	-120	dBc/Hz
	100 KHz	—	—	-120	—	—	-120	—	—	-120	—	—	-120	dBc/Hz
	≥ 1 MHz	—	—	-130	—	—	-130	—	—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3			3	_	_	3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%		_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000± 1%	_	Ω
Transceiver Clock	(S													
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Figure 1–3 shows the differential receiver input waveform.

Figure 1–4 shows the transmitter output waveform.

Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1-36.	Typical V _{nn} Setting	j, TX Term = 85 Ω	for Arria II GZ Devices
-------------	---------------------------------	--------------------------	-------------------------

Sumbol	V _{oD} Setting (mV)									
Symbol	0	1	2	3	4	5	6	7		
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%		

Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX	Arria II GX (Quartus II Software) VOD Setting										
(Quartus II Software) First Post Tap Setting	1	2	4	5	6	7	Unit				
0 (off)	0	0	0	0	0	0	—				
1	0.7	0	0	0	0	0	dB				
2	2.7	1.2	0.3	0	0	0	dB				
3	4.9	2.4	1.2	0.8	0.5	0.2	dB				
4	7.5	3.8	2.1	1.6	1.2	0.6	dB				
5	_	5.3	3.1	2.4	1.8	1.1	dB				
6		7	4.3	3.3	2.7	1.7	dB				

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Pre-	V ₀₀ Setting										
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7			
0	0	0	0	0	0	0	0	0			
1	N/A	0.7	0	0	0	0	0	0			
2	N/A	1	0.3	0	0	0	0	0			
3	N/A	1.5	0.6	0	0	0	0	0			
4	N/A	2	0.7	0.3	0	0	0	0			
5	N/A	2.7	1.2	0.5	0.3	0	0	0			
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0			
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0			
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0			
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2			
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3			
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4			
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6			
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6			
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7			
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8			
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9			
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1			
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2			
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4			
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5			
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7			
22	N/A	N/A	8	6.1	4.8	3.8	3	2			
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3			
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6			
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3			
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3			
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6			
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4			

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Pre-		V _{OD} Setting										
1st Post-Tap Setting	0	1	2	3	4	5	6	7				
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3				
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A				
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A				

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/	Conditions		13			C4			C5, I	5	C6			11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	nit Jitter Generation	<i>(2)</i>												
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15			0.1	_		0.1	_	_	0.1	_		0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15		_	0.01	—	_	0.01	_	—	0.01	_		0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.01 — — 0.01		_	_	0.01	_		0.01	UI		
SONET/SDH Receiv	ver Jitter Tolerance	<i>(2)</i>												
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15		> 15		> 15			> 15			UI	
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5			> 1.5		> 1.5			> 1.5		į	UI
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15			> 0.1	5	> 0.15		> 0.15		UI		

Symbol/	Conditions		13			C4			C5, I	5	C6		11-1-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SDI Transmitter Ji	tter Generation <i>(8)</i>													
Alignment jitter	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2	_	_	0.2		_	0.2		_	0.2		_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	= 3G) olor Il-off z		_	0.3		_	0.3	_	_	0.3		_	UI
SDI Receiver Jitte	DI Receiver Jitter Tolerance <i>(8)</i>													
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 15 KHz Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 2				> 2			> 2			> 2		UI
	Jitter frequency = 100 KHz Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 0.3			> 0.3		> 0.3			> 0.3			UI	
	Jitter frequency = 148.5 MHz Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 0.3			> 0.3			> 0.3			> 0.3 > 0.3			UI

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/	Conditiono		13			C4			C5, IS	i		C6		Unit	
Description	Conultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII	
OBSAI Receiver Ji	tter Tolerance (12)														
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37			> 0.37		> 0.37		UI		
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	> 0.55		> 0.55				> 0.55			> 0.55 > 0.55			5	UI
3072 Mbps	Jitter frequency = 5.4 KHz	> 8.5			> 8.5		> 8.5			> 8.5			UI		
Sinusoidal jitter	Pattern = CJPAT														
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1		> 0.1			> 0.1			> 0.1			UI	
	Pattern = CJPAI														
	10.9 KHz		> 8.5			> 8.5			> 8.5			> 8.5		UI	
Sinusoidal jitter	Pattern = CJPAT														
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI	
	Pattern = CJPAT														

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	Dandikiana		-C3 and ·	-13	-	-14	Unit		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
OBSAI Receiver Jitter Tolerance	(15)								
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	> 0.37 > 0.37						UI	
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	> 0.55				> 0.55			
	Jitter frequency = 5.4 KHz		× 8 5			× 9 5			
Sinusoidal jitter tolerance at 768 Jitter frequency = 5.4 KHz > Mbps Pattern = CJPAT > Jitter frequency = 460 MHz to 20 MHz > Pattern = CJPAT >	Pattern = CJPAT	> 0.0			20.0		01		
	> 0.1	> 0.1 > 0.1			UI				
	Pattern = CJPAT								
Sinunoidal iittar talaranaa at	Jitter frequency = 10.9 KHz Pattern = CJPAT		> 8.5			> 8.5		UI	
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = C.IPAT		> 0.1			> 0.1		UI	
	litter frequency = 21 8 KHz								
Sinusoidal iitter tolerance at	Pattern = CJPAT		> 8.5			> 8.5		UI	
Sinusoidal jitter tolerance at 3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	z to > 0.1				> 0.1			

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Notes to Table 1-41:

(1) Dedicated refclk pins were used to drive the input reference clocks.

- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_{R} interpretability point.
- (7) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the V_{TX-CM-DC-ACTIVEIDLE-DELTA} of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Table 1–44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

Symbol	Description	Min	Тур	Max	Unit
t _{casc_} outjitter_	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \geq 100 MHz)		_	425	ps (p-p)
PERIOD_ DEDCLK (6),(7)	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \leq 100 MHz)		_	42.5	mUI (p-p)

Notes to Table 1-44:

- (1) f_{IN} is limited by the I/O f_{MAX} .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Symbol	Parameter	Min	Тур	Max	Unit
f	Input clock frequency (–3 speed grade)	5		717 (1)	MHz
IN	Input clock frequency (-4 speed grade)	5		717 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f	PLL VCO operating range (-3 speed grade)	600		1,300	MHz
IVCO	PLL VCO operating range (-4 speed grade)	600		1,300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40		60	%
f	Output frequency for internal global or regional clock (-3 speed grade)	_	_	700 <i>(2)</i>	MHz
IOUT	Symbol Parameter Input clock frequency (-3 speed grade) Input clock frequency (-4 speed grade) FD Input frequency to the PFD PLL VCO operating range (-3 speed grade) PLL VCO operating range (-4 speed grade) DUTY Input clock or external feedback clock input duty cycle Output frequency for internal global or regional clock (-3 speed grade) Output frequency for internal global or regional clock (-4 speed grade) Output frequency for external clock output (-3 speed grade) T_EXT Output frequency for external clock output (-4 speed graa TDUTY Duty cycle for external clock output (-4 speed graa TDUTY Duty cycle for external clock output (-4 speed graa NFIGPLL Time required to reconfigure scan chain NFIGPLL Time required to reconfigure phase shift ANCLK scanclk frequency CK Time required to lock from end-of-device configuration o	_	_	500 <i>(2)</i>	MHz
f	Output frequency for external clock output (-3 speed grade)			717 <i>(2)</i>	MHz
OUT_EXT	Output frequency for external clock output (-4 speed grade)			717 <i>(2)</i>	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_		10	ns
t _{configpll}	Time required to reconfigure scan chain	_	3.5	_	scanclk cycles
t _{CONFIGPHASE}	Time required to reconfigure phase shift	_	1	_	scanclk cycles
f _{SCANCLK}	scanclk frequency	—	—	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or de-assertion of areset	_	_	1	ms

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays)	_	_	1	ms
	PLL closed-loop low bandwidth	—	0.3	—	MHz
f _{CLBW}	PLL closed-loop medium bandwidth	—	1.5	—	MHz
	PLL closed-loop high bandwidth (7)	—	4	—	MHz
t _{PLL_PSERR}	Accuracy of PLL phase shift	—	—	±50	ps
t _{ARESET}	Minimum pulse width on the areset signal	10		—	ns
+ (2) (4)	Input clock cycle to cycle jitter ($F_{REF} \ge 100 \text{ MHz}$)	—	—	0.15	UI (p-p)
l_{INCCJ} (3), (4)	Input clock cycle to cycle jitter (F _{REF} < 100 MHz)	—	—	±750	ps (p-p)
+ (5)	Period Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	—		175	ps (p-p)
LOUTPJ_DC (3)	Period Jitter for dedicated clock output (F _{OUT} < 100 MHz)	—		17.5	mUI (p-p)
t (5)	Cycle to Cycle Jitter for dedicated clock output ($F_{OUT} \ge 100 \text{ MHz}$)	_	_	175	ps (p-p)
t _{outccj_dc} (5)	Cycle to Cycle Jitter for dedicated clock output (F _{OUT} < 100 MHz)	_	_	17.5	mUI (p-p)
t _{outpj io} <i>(5)</i> ,	Period Jitter for clock output on regular I/O $(F_{OUT} \ge 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Period Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{оитссу_ю} <i>(5)</i> ,	Cycle to Cycle Jitter for clock output on regular I/O $(F_{OUT} \geq 100 \text{ MHz})$	_	_	600	ps (p-p)
(8)	Cycle to Cycle Jitter for clock output on regular I/O (F _{OUT} < 100 MHz)	_	_	60	mUI (p-p)
t _{casc_outpj_dc}	Period Jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100MHz$)	_	_	250	ps (p-p)
(5), (6)	Period Jitter for dedicated clock output in cascaded PLLs ($F_{OUT} < 100MHz$)		_	25	mUI (p-p)
f _{DRIFT}	Frequency drift after PFDENA is disabled for duration of 100 us	_	_	±10	%

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 2 of 2)

Notes to Table 1-45:

- (1) This specification is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) This specification is limited by the lower of the two: I/O F_{MAX} or F_{OUT} of the PLL.
- (3) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 120 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–64 on page 1–71.
- (6) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz b. Downstream PLL: Downstream PLL BW > 2 MHz
- (7) High bandwidth PLL settings are not supported in external feedback mode.
- (8) External memory interface clock output jitter specifications use a different measurement method, which is available in Table 1–63 on page 1–71.

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1-46.	DSP	Block Performance	Specifications for	[·] Arria II	GX Devices	(Note 1))
-------------	-----	-------------------	---------------------------	-----------------------	------------	----------	---

Mada	Resources Used			11 -14		
wode	Number of Multipliers	C4	13	C5,I5	C6	Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback <i>(2)</i>	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

(1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.

(2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Table 1-47. DSP Bloc	ck Performance Specificati	ons for Arria II GZ Devices	(Note 1)	(Part 1 of 2)
----------------------	----------------------------	-----------------------------	----------	---------------

Mada	Resources Used	Perfor	nance	lln:t
Moue	Number of Multipliers	-3	-4	UIIIL
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 × 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

·			1 /	
Modo	Resources Used	Perfor	llait	
Moue	Number of Multipliers	-3	-4	UIII
Double mode	1	440	380	MHz

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used		Perfo	rmance		
Memory	Mode	ALUTs	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 \times 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)	_	_	730	690	770	920	ps

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Symbol Conditions	Conditions	13		C4		C5,I5		C6		II.a.iA
	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Clock										
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

Cumbol	Conditiono	13		C4		C5,I5		C6		Ilmit
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300	_	300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300		300		350		400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices	; (Note 1),	(2),	(10)	(Part 1 🛛	of 3)
---	-------------	------	------	-----------	-------

Symbol	Conditions		C3, I3			C4, 14		
Symbol	Conarcions	Min	Тур	Max	Min	Тур	Max	Unit
Clock								
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5		717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9)	Clock boost factor W = 1 to 40 (3)	5	_	717	5		717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10)	Clock boost factor W = 1 to 40 <i>(3)</i>	5	_	420	5		420	MHz

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions <i>(4)</i>	Maximum
SPI-4	00000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
Talaliel Maplu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
WISCENAREOUS	01010101	8	32	640 data transitions

	Table 1-55.	DPA Lock Time S	pecifications for Arria II Devices	(Note 1),	(2),	(3)
--	-------------	------------------------	------------------------------------	-----------	------	-----

Notes to Table 1-55:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in the table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 1–5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at a data rate less than 1.25 Gbps and all the Arria II GX devices.

Figure 1–5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for All Arria II GX Devices and for Arria II GZ Devices at a Data Rate less than 1.25 Gbps

Table 1-60 lists the DQS phase shift error for Arria II GX devices.

Number of DQS Delay Buffer	C4	13, C5, 15	C6	Unit
1	26	30	36	ps
2	52	60	72	ps
3	78	90	108	ps
4	104	120	144	ps

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GX Devices (*Note 1*)

Note to Table 1-60:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61.	DQS Phase	Shift Error S	pecification	for DLL-Delaye	d Clock (t _{DOS}	PSERR) for A	rria II GZ
Devices <i>(No</i>	ote 1)						

Number of DQS Delay Buffer	-3	-4	Unit
1	28	30	ps
2	56	60	ps
3	84	90	ps
4	112	120	ps

Note to Table 1-61:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

 Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

Paramatar	Clock Network	Symbol	-4		-5		-6		Unit
Falameter			Min	Max	Min	Max	Min	Max	UIIIL
Clock period jitter	Global	$t_{JIT(per)}$	-100	100	-125	125	-125	125	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-200	200	-250	250	-250	250	ps
Duty cycle jitter	Global	$t_{JIT(duty)}$	-100	100	-125	125	-125	125	ps

Notes to Table 1-62:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.

(3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Letter	Subject	Definitions						
	SW (sampling window)	The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: Timing Diagram Bit Time 0.5 x TCCS RSKM Sampling Window RSKM 0.5 x TCCS RSKM						
S	Single-ended Voltage Referenced I/O Standard	The JEDEC standard for SSTL and HSTL I/O standards define both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input has crossed the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the AC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing: Single-Ended Voltage Referenced I/O Standard						
	t _C	High-speed receiver and transmitter input and output clock period.						
	TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).						
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.						
T	t _{duty}	The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_c/w)$						
	t _{FALL}	Signal high-to-low transition time (80-20%)						
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.						
	t _{OUTPJ_IO}	Period jitter on the general purpose I/O driven by a PLL.						
	t _{outpj_dc}	Period jitter on the dedicated clock output driven by a PLL.						
	t _{RISE}	Signal low-to-high transition time (20-80%).						

 Table 1–68. Glossary (Part 3 of 4)