E·XFL

Intel - EP2AGX65CU17I5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	2530
Number of Logic Elements/Cells	60214
Total RAM Bits	5371904
Number of I/O	156
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	358-LFBGA, FCBGA
Supplier Device Package	358-UBGA, FCBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx65cu17i5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_L}	Supplies transceiver high voltage power (left side)	-0.5	3.75	V
V _{CCA_R}	Supplies transceiver high voltage power (right side)	-0.5	3.75	V
V_{CCHIP_L}	Supplies transceiver HIP digital power (left side)	-0.5	1.35	V
V _{CCR_L}	Supplies receiver power (left side)	-0.5	1.35	V
V _{CCR_R}	Supplies receiver power (right side)	-0.5	1.35	V
V _{CCT_L}	Supplies transmitter power (left side)	-0.5	1.35	V
V _{CCT_R}	Supplies transmitter power (right side)	-0.5	1.35	V
V _{CCL_GXBLn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (left side)	-0.5	1.35	V
V _{CCL_GXBRn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (right side)	-0.5	1.35	V
V _{CCH_GXBLn} (1)	Supplies power to the transceiver PMA output (TX) buffer (left side)	-0.5	1.8	V
V _{CCH_GXBRn} (1)	Supplies power to the transceiver PMA output (TX) buffer (right side)	-0.5	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2. /	Absolute Maximum	Ratings for Arria	II GZ Devices	(Part 2 of 2)
--------------	------------------	-------------------	---------------	---------------

Note to Table 1-2:

(1) n = 0, 1, or 2.

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–3 and undershoot to -2.0 V for magnitude of currents less than 100 mA and periods shorter than 20 ns.

Table 1–3 lists the Arria II GX and GZ maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the device lifetime. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 5.41% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 5.41/10ths of a year.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Ormula d	Description	Opendikione (U)	Resistance	Tolerance	11
Symbol	Description	Conditions (V)	C3,I3	C4,14	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/ Description Condition		C4			C5 and 15			C6			Unit			
	Conultion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Digital reset pulse width	—			•		М	inimum is 2	parallel clo	ock cycles					

Notes to Table 1-34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Symbol/	Conditions	-	C3 and –I3	i (1)				
Description	Conditions	Min	Тур	Мах	Min	Тур	Max	- Unit
Transceiver Clocks			•				•	
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μs
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCN	IL, 2.5-V PC	ML, LVPE	CL, and L\	/DS	
Data rate (16)	—	600	—	6375	600	—	3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	V
Absolute $V_{\mbox{\scriptsize MIN}}$ for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting		_	2.7	-	_	2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	_	1.6	_	_	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins <i>(8)</i>	Data Rate > 5 Gbps Equalization = 0 DC gain = 0 dB	165	_		165	_		mV
V	V _{ICM} = 0.82 V setting		820 ± 10	%		mV		
V _{ICM}	$V_{ICM} = 1.1 V$ setting (7)		1100 ± 10	%		1100 ± 10	1%	mV

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Symbol/	Oanditiana	_	C3 and –I3	(1)		-C4 and -I4			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Transmitter					-	• •			
Supported I/O Standards				1.5-V PCML					
Data rate (14)	—	600	_	6375	600	_	3750	Mbps	
V _{OCM}	0.65 V setting		650			650	_	mV	
	85– Ω setting		85 ± 15%	0		85 ± 15%	/o	Ω	
Differential on-chip	100– Ω setting		100 ± 15°	%		100 ± 150	%	Ω	
termination resistors	120– Ω setting		120 ± 15°	%		120 ± 150	%	Ω	
	150- Ω setting		150 ± 159	%		150 ± 159	%	Ω	
Differential and common mode return loss	$\begin{array}{c} \mbox{PCle Gen1 and} \\ \mbox{Gen2 (TX V_{0D}=4),} \\ \mbox{XAUI (TX V_{0D}=6),} \\ \mbox{HiGig} + \\ \mbox{(TX } V_{0D}$ =6),} \\ \mbox{CEI SR/LR} \\ \mbox{(TX } V_{0D}=8),} \\ \mbox{SRIO SR (V_{0D} =8),} \\ \mbox{SRIO LR (V_{0D} =8),} \\ \mbox{CPRI LV (V_{0D} =6),} \\ \mbox{CPRI HV (V_{0D} =6),} \\ \mbox{SATA (V_{0D} =4),} \end{array}			Com	oliant	ant			
Rise time (15)	—	50	—	200	50	—	200	ps	
Fall time (15)	—	50	_	200	50	_	200	ps	
Intra-differential pair skew	—		_	15		_	15	ps	
Intra-transceiver block transmitter channel-to-channel skew	×4 PMA and PCS bonded mode Example: XAUI, PCIe ×4, Basic ×4	_	_	120	_	_	120	ps	
Inter-transceiver block transmitter channel-to-channel skew	×8 PMA and PCS bonded mode Example: PCIe ×8, Basic ×8	_	_	500	_	_	500	ps	
CMUO PLL and CMU1 PLL									
Supported Data Range	_	600		6375	600	_	3750	Mbps	
<pre>pll_powerdown minimum pulse width (tpll_powerdown)</pre>	_		1			1		μS	
CMU PLL lock time from pll_powerdown de-assertion	_	_	_	100	_	_	100	μS	

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 4 of 5)

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

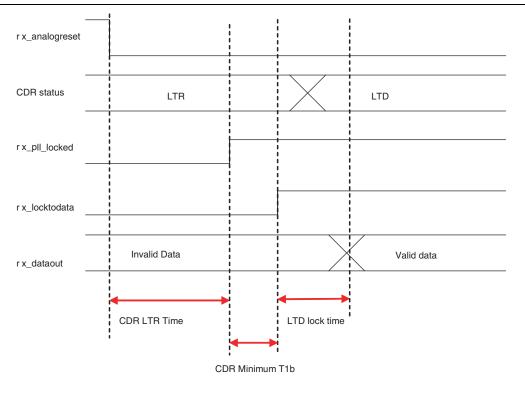


Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

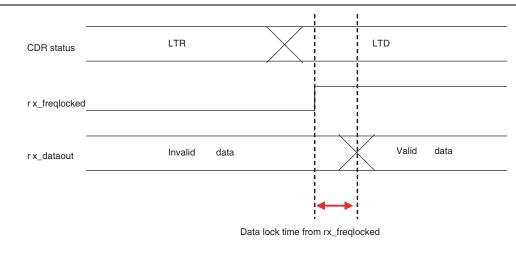


Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX (Quartus II		Arria II GX (Quartus II Software) VOD Setting												
Software) First Post Tap Setting	1	2	4	5	6	7	Unit							
0 (off)	0	0	0	0	0	0	—							
1	0.7	0	0	0	0	0	dB							
2	2.7	1.2	0.3	0	0	0	dB							
3	4.9	2.4	1.2	0.8	0.5	0.2	dB							
4	7.5	3.8	2.1	1.6	1.2	0.6	dB							
5	—	5.3	3.1	2.4	1.8	1.1	dB							
6	_	7	4.3	3.3	2.7	1.7	dB							

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Pre-				V _{od} S	etting			
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Symbol/	Oraditions		13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	- Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>				-									
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	6	> 0.6		6		> 0.6		UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5)</i>)										
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	_		0.35	UI
SRIO Receiver Jitt														
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	> 0.37		> 0.37		> 0.37		> 0.37		UI				
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	> 0.55		> 0.55		> 0.55			> 0.55		UI			
<u> </u>	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		> 8.5			> 8.5		UI	
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1		> 0.1			> 0.1			> 0.1		UI	
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps	> 0.1				> 0.1		> 0.1				> 0.1		UI
	Pattern = CJPAT													
GIGE Transmit Jitt	er Generation <i>(6)</i>	1	1		1	1		1	1		1	r		
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	-	-	0.14	_	-	0.14	_	_	0.14	-		0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/	O and l'it's and		–C3 and –I3		-	-C4 and	-14	Unit
Description	Conditions			Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)		-					
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	;		> 0.66		UI
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_		UI
HiGig Receiver Jitter Tolerance								
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	> 0.37		_	_	_	UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	> 0.65		_	_		UI	
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT	> 8.5		_	_	_	UI	
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_		0.3		_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce		•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.675		_	_	_	UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.98	8	-	_		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Table 1–44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

Symbol	Description	Min	Тур	Max	Unit
t _{casc_} outjitter_	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \geq 100 MHz)	_	_	425	ps (p-p)
PERIOD_ DEDCLK (6), (7)	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \leq 100 MHz)	_	_	42.5	mUI (p-p)

Notes to Table 1-44:

- (1) f_{IN} is limited by the I/O f_{MAX} .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Symbol	Parameter	Min	Тур	Max	Unit
f	Input clock frequency (-3 speed grade)	5		717 <i>(1)</i>	MHz
f _{IN}	Input clock frequency (-4 speed grade)	5		717 <i>(1)</i>	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f	PLL VCO operating range (-3 speed grade)	600	_	1,300	MHz
f _{VCO}	PLL VCO operating range (-4 speed grade)	600		1,300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40	—	60	%
f	Output frequency for internal global or regional clock (-3 speed grade)	_	_	700 (2)	MHz
f _{out}	Output frequency for internal global or regional clock (-4 speed grade)	_	_	500 <i>(2)</i>	MHz
f	Output frequency for external clock output (-3 speed grade)	_	—	717 <i>(2)</i>	MHz
f _{out_ext}	Output frequency for external clock output (-4 speed grade)	_		717 <i>(2)</i>	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
t _{configpll}	Time required to reconfigure scan chain	_	3.5	—	scanclk cycles
t _{CONFIGPHASE}	Time required to reconfigure phase shift		1	—	scanclk cycles
f _{scanclk}	scanclk frequency	—	—	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or de-assertion of areset	_	_	1	ms

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

Mada	Resources Used	Perforr	nance	11
Mode	Number of Multipliers	-3	-4	Unit
Double mode	1	440	380	MHz

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used					
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)			730	690	770	920	ps

Configuration

Table 1–50 lists the configuration mode specifications for Arria II GX and GZ devices.

Drogromming Modo	D	Unit		
Programming Mode	Min	Тур	Max	UIIIL
Passive serial	—	—	125	MHz
Fast passive parallel	—	—	125	MHz
Fast active serial (fast clock)	17	26	40	MHz
Fast active serial (slow clock)	8.5	13	20	MHz
Remote update only in fast AS mode			10	MHz

Table 1–50. Configuration Mode Specifications for Arria II Devices

JTAG Specifications

Table 1–51 lists the JTAG timing parameters and values for Arria II GX and GZ devices.

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30	—	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPC0}	JTAG port clock to output	—	11	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14	ns

 Table 1–51. JTAG Timing Parameters and Values for Arria II Devices

Chip-Wide Reset (Dev_CLRn) Specifications

Table 1–52 lists the specifications for the chip-wide reset (Dev_CLRn) for Arria II GX and GZ devices.

Table 1–52. Chip-Wide Reset (Dev_CLRn) Specifications for Arria II Devices

Description	Min	Тур	Max	Unit
Dev_CLRn	500			μS

• • •	C3, I3				C4, I4			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	True differential I/O standards		_	200	_	_	200	ps
t _{rise &} t _{fall}	Emulated differential I/O standards with three external output resistor networks		_	250	_	_	300	ps
	Emulated differential I/O standards with one external output resistor	_	_	500	_	_	500	ps
	True LVDS			100			100	ps
TCCS	Emulated LVDS_E_3R	_	_	250	_	_	250	ps
Receiver								
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps
DPA run length	DPA mode		—	10000	—	—	10000	UI
Soft-CDR PPM tolerance	Soft-CDR mode	_	_	300	_	_	300	± PPM
Sampling Window (SW)	Non-DPA mode	_	_	300	_		300	ps

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Notes to Table 1-54:

(1) When J = 3 to 10, use the SERDES block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.

- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1-55 lists DPA lock time specifications for Arria II GX and GZ devices.

Frequency	Fr	Frequency Range (MHz) Resoluti		Resolution	DQS Delay	Number of		
Mode	C4	13, C5, 15	C6 (°)				Buffer Mode <i>(1)</i>	Delay Chains
5	270-410	270-380	270-320	36	High	10		
6	320-450	320-410	320-370	45	High	8		

Table 1–57	. External Memory	Interface	Specifications	for Arria II GX	Devices	(Part 2 of 2)
------------	-------------------	-----------	----------------	-----------------	---------	---------------

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Francisco Manda	Frequency I	Range (MHz)	Augilable Dhage Ohiff	DQS Delay	Number of
Frequency Mode	-3	-4	Available Phase Shift	Buffer Mode <i>(1)</i>	Delay Chains
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10
3	180-260	180-240	45°, 90°,135°, 180°	Low	8
4	240-320	240-290	30°, 60°, 90°, 120°	High	12
5	290-380	290-360	36°, 72°, 108°, 144°	High	10
6	360-450	360-450	45°, 90°, 135°, 180°	High	8
7	470-630	470-590	60°, 120°, 180°, 240°	High	6

Note to Table 1–58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1–59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)	Table 1–59	. DQS Phase Offset Dela	y Per Setting for Arria II GX Device	s (Note 1), (2),	(3)
---	------------	-------------------------	--------------------------------------	------------------	-----

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
13, C5, 15	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

(1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.

(2) The typical value equals the average of the minimum and maximum values.

(3) The delay settings are linear.

Table 1–60 lists the DQS phase shift error for Arria II GX devices.

Number of DQS Delay Buffer	C4	13, C5, 15	C6	Unit
1	26	30	36	ps
2	52	60	72	ps
3	78	90	108	ps
4	104	120	144	ps

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GX Devices (*Note 1*)

Note to Table 1-60:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61.DQS Phase Shift Error Specification for DLL-Delayed Clock (t _{DQS PSERR}) for Arria II (GZ
Devices (Note 1)	

Number of DQS Delay Buffer	-3	-4	Unit
1	28	30	ps
2	56	60	ps
3	84	90	ps
4	112	120	ps

Note to Table 1-61:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

 Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

Parameter	Clock	Symbol	-	4	_	5	_	6	Unit
raiametei	Network	Symuu	Min	Max	Min	Max	Min	Max	UIII
Clock period jitter	Global	$t_{JIT(per)}$	-100	100	-125	125	-125	125	ps
Cycle-to-cycle period jitter	Global	$t_{JIT(cc)}$	-200	200	-250	250	-250	250	ps
Duty cycle jitter	Global	$t_{JIT(duty)}$	-100	100	-125	125	-125	125	ps

Notes to Table 1-62:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.

(3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Deveneter	Clock Sumbol		Clock -3		-	4	11-1-1
Parameter	Network	Symbol	Min	Max	Min	Max	Unit
Clock period jitter	Regional	$t_{JIT(per)}$	-55	55	-55	55	ps
Cycle-to-cycle period jitter	Regional	t _{JIT(cc)}	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	$t_{\text{JIT}(\text{per})}$	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-165	165	-165	165	ps
Duty cycle jitter	Global	t _{JIT(duty)}	-90	90	-90	90	ps

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	ycle Distortion	on I/O Pins	for Arria II G	X Devices	(Note 1))
	Duty O	JOID DIOLOILION			/ BO11000	11010 1/	,

Symbol	(C4	13, 1	C5, I5		C6	Unit
Symbol	Min	Max	Min	Max	Min	Max	UIII
Output Duty Cycle	45	55	45	55	45	55	%

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Sumbol	C3, I3 C4, I4		C3, I3		Unit
Symbol	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1-66.	IOE Prog	rammable Dela	y for Arria II	GX Devices
-------------	----------	---------------	----------------	-------------------

	Available Settings <i>(1)</i>	Minimum Offset <i>(2)</i>	Maximum Offset								
Parameter			Fast Model		Slow Model					Unit	
			13	C4	15	13	C4	C5	15	C6	
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

(1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.

(2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67 lists the IOE p	programmable delay	y settings for Arria	II GZ devices.

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

Parameter	Available Settings <i>(1)</i>	Minimum Offset <i>(2)</i>	Maximum Offset						
			Fast		Unit				
			Industrial	Commercial	C3	13	C4	14	
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns

Notes to Table 1-67:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.

(2) Minimum offset does not include the intrinsic delay.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Table 1-68. Glossary (Part 2 of 4)

Letter	Subject	Definitions								
	J	High-speed I/O block: Deserialization factor (width of parallel data bus).								
G, H, I, J	JTAG Timing Specifications	JTAG Timing Specifications: TMS TDI TDI t_{JCP} t_{JCP} t_{JPSU} t_{JPSU} t_{JPSU} t_{JPSU} t_{JPX} t_{JPCO} t_{JPX} t_{JPX} t_{JPX} t_{JPX}								
K, L, M, O, P	PLL Specifications	PLL Specification parameters: Diagram of PLL Specifications (1) <pre></pre>								
Q, R	RL	Receiver differential input discrete resistor (external to the Arria II device).								