

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	2530
Number of Logic Elements/Cells	60214
Total RAM Bits	5371904
Number of I/O	252
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx65df25i5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1–10 lists the bus hold specifications for Arria II GZ devices.

Table 1–10. Bus Hold Parameters for Arria II GZ Devices

			V _{CCIO} (V)										
Parameter	Symbol	ymbol Cond.	1.2		1.5		1.8		2.5		3.0		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μА
Bus-hold High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μА
Bus-hold Low overdrive current	I _{ODL}	OV < V _{IN} < V _{CCIO}	_	120	_	160	_	200	_	300	_	500	μΑ
Bus-hold High overdrive current	Годн	0V < V _{IN} < V _{CCIO}	_	-120	_	-160	_	-200	_	-300	_	-500	μА
Bus-hold trip point	V_{TRIP}	_	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

OCT Specifications

Table 1–11 lists the Arria II GX device and differential OCT with and without calibration accuracy.

Table 1–11. OCT With and Without Calibration Specification for Arria II GX Device I/Os (Note 1) (Part 1 of 2)

Cumbal	Deceriation	Conditions (V)	Calibration	n Accuracy	Unit
Symbol	Description	Conditions (V)	Commercial	Industrial	UIIIL
25-Ω R _S 3.0, 2.5	25- Ω series OCT without calibration	$V_{CCIO} = 3.0, 2.5$	± 30	± 40	%
50-Ω R _S 3.0, 2.5	50- Ω series OCT without calibration	V _{CCIO} = 3.0, 2.5	± 30	± 40	%
25-Ω R _S 1.8	25-Ω series OCT without calibration	V _{CCIO} = 1.8	± 40	± 50	%
50-Ω R _S 1.8	50- Ω series OCT without calibration	V _{CCIO} = 1.8	± 40	± 50	%
25-Ω R _S 1.5, 1.2	25-Ω series OCT without calibration	V _{CCIO} = 1.5, 1.2	± 50	± 50	%
50-Ω R _S 1.5, 1.2	50- Ω series OCT without calibration	V _{CCIO} = 1.5, 1.2	± 50	± 50	%
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%

Table 1–11. OCT With and Without Calibration Specification for Arria II GX Device I/Os (Note 1) (Part 2 of 2)

Symbol	Description	Description Conditions (V)		Calibration Accuracy			
	Description	Conditions (V)	Commercial	Industrial	Unit		
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%		
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCIO} = 2.5	± 30	± 30	%		

Note to Table 1-11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices (Note 1)

	Description Conditions (II)		Ca	libration Accura	tion Accuracy	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,I4	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	0010 , - ,		± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	50-Ω internal parallel OCT with calibration	$V_{CCIO} = 2.5, 1.8,$ 1.5, 1.2	± 10	± 10	± 10	%
20- Ω , 40- Ω , and 60- Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 (3)	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift}		± 10	± 10	± 10	%

Notes to Table 1-12:

- (1) OCT calibration accuracy is valid at the time of calibration only.
- (2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.
- (3) $20-\Omega$ R_S is not supported for 1.5 V and 1.2 V in Row I/O.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ Devices

0	Paradotta:	0	Resistance	Tolerance	1114
Symbol	Description	Conditions (V)	C3,I3	C4,I4	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	$V_{CCIO} = 3.0, 2.5$	± 40	± 40	%
25-Ω R _S 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCIO} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCIO} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} = R_{SCAL} \bigg(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO}.

Use the following with Equation 1–1:

- \blacksquare R_{SCAL} is the OCT resistance value at power up.
- lacktriangle ΔT is the variation of temperature with respect to the temperature at power up.
- lacksquare ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- \blacksquare dR/dT is the percentage change of R_{SCAL} with temperature.
- $\,\blacksquare\,\, dR/dV$ is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Table 1–14. OCT Variation after Power-up Calibration for Arria II GX Devices

Nominal Voltage V _{CC10} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Note to Table 1-15:

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1-16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),$ and dedicated clock input pins	7	pF

⁽¹⁾ Valid for V_{CCIO} range of ±5% and temperature range of 0° to 85°C.

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$\begin{array}{c} C_{\text{CLK1}},C_{\text{CLK3}},C_{\text{CLK8}},\\ \text{and}C_{\text{CLK10}} \end{array}$	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (2)	7	28	47	kΩ
R _{PU}	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (2)	8	35	61	kΩ
тър	programmable pull-up resistor	$V_{CCIO} = 1.8 \text{ V } \pm 5\% $ (2)	10	57	108	kΩ
	option is enabled.	$V_{CCIO} = 1.5 \text{ V } \pm 5\% $ (2)	13	82	163	kΩ
		V _{CCIO} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$	6	19	29	kΩ
	Value of TOV also still datum	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$	6	25	42	kΩ
		$V_{CCIO} = 1.8 \text{ V } \pm 5\%$	7	35	70	kΩ
		$V_{CCIO} = 1.5 \text{ V } \pm 5\%$	8	50	112	kΩ

Notes to Table 1-18:

⁽¹⁾ All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

⁽²⁾ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

I/O Standard Specifications

Table 1–22 through Table 1–35 list input voltage (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by the Arria II device family. They also show the Arria II device family I/O standard specifications. V_{OL} and V_{OH} values are valid at the corresponding I_{OH} and I_{OL} , respectively.

For an explanation of terms used in Table 1–22 through Table 1–35, refer to "Glossary" on page 1–74.

Table 1–22 lists the single-ended I/O standards for Arria II GX devices.

Table 1–22. Single-Ended I/O Standards for Arria II GX Devices

I/O Standard		V _{CCIO} (V)		V _{IL} (V)		V _{IH}	_I (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mÅ)	(mA)
3.3 V LVTTL	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.45	2.4	4	-4
3.3 V LVCMOS	3.135	3.3	3.465	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} -0.2	2	-2
3.0 V LVTTL	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0 V LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V LVCMOS	2.375	2.5	2.625	-0.3	0.7	1.7	V _{CCIO} + 0.3	0.4	2	1	-1
1.8 V LVCMOS	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V LVCMOS	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
1.2 V LVCMOS	1.14	1.2	1.26	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2
3.0-V PCI	2.85	3	3.15	_	0.3 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCIO} + 0.3	0.1 × V _{CCIO}	0.9 × V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3	3.15	_	0.35 × V _{CCIO}	0.5 × V _{CCIO}	V _{CCIO} + 0.3	0.1 × V _{CCIO}	0.9 × V _{CCIO}	1.5	-0.5

Table 1–23 lists the single-ended I/O standards for Arria II GZ devices.

Table 1–23. Single-Ended I/O Standards for Arria II GZ Devices (Part 1 of 2)

I/O Standard		V _{CCIO} (V)		VII	(V)	V _{IH}	(V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mÅ)
LVTTL	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.4	2.4	2	-2
LVCMOS	2.85	3	3.15	-0.3	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5 V	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.45	V _{CCIO} - 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 × V _{CCIO}	0.65 × V _{CCIO}	V _{CCIO} + 0.3	0.25 × V _{CCIO}	0.75 × V _{CCIO}	2	-2

Table 1–33 lists the differential I/O standard specifications for Arria II GZ devices.

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

I/O	1	V _{CCIO} (V	1)		V _{ID} (mV)		V _{ICM(E}	_{IC)} (V)	V ₀	_D (V) <i>(</i> 3	3)	V	_{OCM} (V) <i>(</i>	3)
Standard (2)	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5
Mini-LVDS (HIO)	2.375	2.5	2.625	200	l	600	0.4	1.32 5	0.25		0.6	1	1.2	1.4
Mini-LVDS (VIO)	2.375	2.5	2.625	200		600	0.4	1.32 5	0.25		0.6	1	1.2	1.5
LVPECL	2.375	2.5	2.625	300			0.6	1.8			_	_		_
BLVDS (4)	2.375	2.5	2.625	100		_	_	_	_	_	_	_	_	_

Notes to Table 1-33:

- (1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.
- (3) R_1 range: $90 \le RL \le 110 \Omega$.
- (4) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0 1111		13			C4			C5 and I5	5		C6		1114
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCle	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100	_	_	100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	%		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	_	-50	_	_	-50	_	_	-50	_		-50	dBc/Hz
	100 Hz	_	_	-80	_	_	-80	_	_	-80	_		-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	_	-110	_	_	-110	_	_	-110	_	_	-110	dBc/Hz
Noise	10 KHz	_	_	-120	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
	100 KHz	_	_	-120	_	_	-120	_	_	-120	_	_	-120	dBc/Hz
	≥ 1 MHz	_	_	-130	_	_	-130	_	_	-130	_	_	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK (3)	10 KHz to 20 MHz	_	_	3	_	_	3	_	_	3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S				•			•	•		•			
Calibration block clock frequency (cal_blk_clk)	_	10		125	10	_	125	10	_	125	10	_	125	MHz

Chapter 1: Device Datasheet for Arria II DevicesSwitching Characteristics

Chapter 1: Device Datasheet for Arria II Devices
Switching Characteristics

December 2013 Altera Corporation

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Symbol/	0		13			C4			C5 and Is	j		C6		11:4
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100	_	_	mV
V	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
V _{ICM}	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	$100-\Omega$ setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCle					·		50	MHz to 1.2	25 GHz: –10d	dB			•
differential mode	XAUI							100	MHz to 2	.5 GHz: –10	dB			
Return loss	PCle							50	MHz to 1.	25 GHz: –6d	В			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	В			
Programmable PPM detector (8)	_						62.5, 100, 1 250, 300, 500							ppm
Run length	_	_	80	_	_	80	_	_	80	_	_	80	_	UI
Programmable equalization	_	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time	_	_	_	75	_	_	75	_	_	75	_	_	75	μs
CDR minimum T1b (10)	_	15			15			15			15			μѕ

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Symbol/	Oandikiana	-	C3 and -I3	3 (1)		-C4 and -	·14	11
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transceiver Clocks			•			•		
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	MHz
reconfig_clk Clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μѕ
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCN	IL, 2.5-V PC	ML, LVPE	CL, and LV	/DS	
Data rate (16)	_	600	_	6375	600		3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	_		_	1.6	_	_	1.6	٧
Operational V _{MAX} for a receiver pin	_		_	1.5	_	_	1.5	٧
Absolute $V_{\mbox{\scriptsize MIN}}$ for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting	_	_	2.7	_	_	2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	_	1.6		_	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins (8)	Data Rate > 5 Gbps Equalization = 0 DC gain = 0 dB	165	_	_	165	_	_	mV
V	V _{ICM} = 0.82 V setting		820 ± 10	%		820 ± 10°	%	mV
V _{ICM}	$V_{ICM} = 1.1 \text{ V setting}$ (7)		1100 ± 10	1%		1100 ± 10	%	mV

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	O a malistica ma	-(C3 and –I3	(1)		-C4 and -	14	11-14				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit				
	PCIe Gen1			2.5 -	3.5			MHz				
	PCIe Gen2	6 - 8		n2 6 - 8				6 - 8				MHz
	(OIF) CEI PHY at 4.976 Gbps	at 7 - 11					MHz					
	(OIF) CEI PHY at 6.375 Gbps			5 -	10			MHz				
-3 dB Bandwidth	XAUI		2 - 4			MHz						
	SRIO 1.25 Gbps			3 -	5.5			MHz				
	SRIO 2.5 Gbps			3 -	5.5			MHz				
	SRIO 3.125 Gbps			2 -	4			MHz				
	GIGE			2.5 -	4.5			MHz				
	SONET OC12			1.5 -	2.5			MHz				
	SONET OC48			3.5	- 6			MHz				
Transceiver-FPGA Fabric In	terface											
Interface speed	_	25 — 325 25 — 250		MHz								
Digital reset pulse width	_	Minimum is two parallel clock cycles				_						

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Pre- Emphasis				V _{od} S	etting			T
1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Symbol/	0		13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Unit									
SDI Transmitter J	itter Generation <i>(8)</i>													
Alignment jitter	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2	_	_	0.2		_	0.2	_	_	0.2		_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3	_	_	0.3		_	0.3	_	_	0.3		_	UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>							•			•			•
	Jitter frequency = 15 KHz Data rate = 2.97 Gbps (3G) Pattern = single line scramble		> 2			> 2			> 2			> 2		UI
	color bar Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3			> 0.3			> 0.3		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3			> 0.3			> 0.3		UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 6 of 10)

Symbol/	0		13			C4			C5, I	5		C6		1114
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 20 KHz													
	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		>1			> 1			> 1			> 1		UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 100 KHz Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2)		> 0.2	!		> 0.2		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 1.485 Gbps (HD) Pattern =75% color bar		> 0.2			> 0.2	2		> 0.2			> 0.2		UI
SATA Transmit Jitt	ter Generation <i>(10)</i>													
Total jitter at 1.5 Gbps (G1)	Compliance pattern	_	_	0.55	_	_	0.55	_	_	0.55	_		0.55	UI
Deterministic jitter at 1.5 Gbps (G1)	Compliance pattern	_	_	0.35	_	_	0.35	_	_	0.35	_		0.35	UI
Total jitter at 3.0 Gbps (G2)	Compliance pattern	_	_	0.55	_	_	0.55	_	_	0.55	_		0.55	UI
Deterministic jitter at 3.0 Gbps (G2)	Compliance pattern		_	0.35		_	0.35	_	_	0.35	_		0.35	UI
Total jitter at 6.0 Gbps (G3)	Compliance pattern	_	_	0.52	_	_	_	_	_	_	_		_	UI
Random jitter at 6.0 Gbps (G3)	Compliance pattern	_	_	0.18	_	_	_	_	_	_	_	_	_	UI
SATA Receiver Jit	ter Tolerance (10)													
Total jitter tolerance at 1.5 Gbps (G1)	Compliance pattern	> 0.65			> 0.6	5	> 0.65			> 0.65			UI	
Deterministic jitter tolerance at 1.5 Gbps (G1)	Compliance pattern		> 0.35			> 0.3	5		> 0.3	5		> 0.3	5	UI
SSC modulation frequency at 1.5 Gbps (G1)	Compliance pattern		33			33			33			33		kHz

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

Symbol/	Oandill	-	-C3 and	-I3	-	-C4 and -	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		. 45			. 45		
	Pattern = PRBS15		> 15			> 15		UI
	Jitter frequency = 100 KHZ		. 1 5			> 1.5		UI
	Pattern = PRBS15		> 1.5			> 1.0		UI
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15							
	Jitter frequency = 10 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15		> 0.10			> 0.13		UI
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>							
Total jitter FC-1	Pattern = CRPAT	_		0.23	_	_	0.23	UI
Deterministic jitter FC-1	Pattern = CRPAT	_	_	0.11	_	_	0.11	UI
Total jitter FC-2	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Deterministic jitter FC-2	Pattern = CRPAT	_	_	0.2	_	_	0.2	UI
Total jitter FC-4	Pattern = CRPAT	_	_	0.52	_	_	0.52	UI
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Fibre Channel Receiver Jitter Tole	erance <i>(4)</i> , <i>(6)</i>	•						•
Deterministic jitter FC-1	Pattern = CJTPAT		> 0.37			> 0.37		UI
Random jitter FC-1	Pattern = CJTPAT		> 0.31			> 0.31		UI
Sinusoidal jitter FC-1	Fc/25000		> 1.5			> 1.5		UI
Siliusuluai jillei FG-1	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-2	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI
Siliusoluai jillei 10-2	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI
omasolaar jittor 10 4	Fc/1667		> 0.1			> 0.1		UI
XAUI Transmit Jitter Generation (7)							
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	-	_	0.17	_	_	0.17	UI
XAUI Receiver Jitter Tolerance (7)	•	•		•			
Total jitter	_		> 0.65			> 0.65		UI
Deterministic jitter	_		> 0.37			> 0.37		UI

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

Symbol/	Conditions	-	-C3 and	-l3		-C4 and	-14	11-24
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1		UI
PCIe Transmit Jitter Generation	(8)							
Total jitter at 2.5 Gbps (Gen1)—x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	0.25	UI
Total jitter at 5 Gbps (Gen2)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	_	UI
PCle Receiver Jitter Tolerance (8)							
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6		UI
Total jitter at 5 Gbps (Gen2)	Compliance pattern	N	ot suppo	rted	N	ot suppo	rted	UI
PCIe (Gen 1) Electrical Idle Dete	ct Threshold							
V _{RX-IDLE-DETDIFFp-p} (9)	Compliance pattern	65		175	65	_	175	UI
SRIO Transmit Jitter Generation	(10)							
Deterministic jitter	Data rate = 1.25, 2.5, 3.125 Gbps			0.17			0.17	UI
(peak-to-peak)	Pattern = CJPAT			0.17		_	0.17	UI
Total jitter (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_		0.35	_	_	0.35	UI
SRIO Receiver Jitter Tolerance ((10)							
Deterministic jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37	,		> 0.37		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55	i		> 0.55		UI
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
GIGE Transmit Jitter Generation	(11)							
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	UI
								+

Table 1-47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Mode	Resources Used	Perform	nance	Unit
Mode	Number of Multipliers	-3	-4	UIIIL
Double mode	1	440	380	MHz

Notes to Table 1-47:

- (1) Maximum is for fully pipelined block with Round and Saturation disabled.
- (2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1–48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used					
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
M9K Block	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)		_	900	850	950	1130	ps
	Min Pulse Width (clock low time)	_	_	730	690	770	920	ps

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 2 of 4)

Cumbal	Conditions	13		C4		C5,I5		C6		Unit
Symbol		Min	Max	Min	Max	Min	Max	Min	Max	UIIIL
Transmitter										
	SERDES factor, J = 3 to 10 (using dedicated SERDES)	150	1250 (2)	150	1250 (2)	150	1050 (2)	150	840	Mbps
f _{HSDR_TX} (true LVDS output data rate)	SERDES factor, J = 4 to 10 (using logic elements as SERDES)	(3)	945	(3)	945	(3)	840	(3)	740	Mbps
	SERDES factor, J = 2 (using DDR registers) and J = 1 (using SDR register)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	Mbps
f _{HSDR_TX_E3R} (emulated LVDS_E_3R output data rate) (7)	SERDES factor, J = 4 to 10	(3)	945	(3)	945	(3)	840	(3)	740	Mbps

Table 1-53.	High-Speed I/O Specifications for Arria II GX Devices ((Part 4 of 4)
-------------	---	---------------

Combal	Conditions	13		C4		C5,I5		C6		IIi.
Symbol		Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300	_	300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)	_	300	_	300	_	350	_	400	ps

Notes to Table 1-53:

- (1) $f_{HSCLK_IN} = f_{HSDR} / W$. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.
- (2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.
- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 1 of 3)

Cumbal	Conditions		C3, I3			IIi.t			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Clock	Clock								
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz	
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9)	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz	
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10)	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz	

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.