

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	3747
Number of Logic Elements/Cells	89178
Total RAM Bits	6839296
Number of I/O	260
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx95df25c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1–11. OCT With and Without Calibration Specification for Arria II GX Device I/Os (Note 1) (Part 2 of 2)

Combal	Description	Description Conditions (V)		Calibration Accuracy				
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit			
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%			
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCIO} = 2.5	± 30	± 30	%			

Note to Table 1-11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices (Note 1)

		6 1111 (115	Ca	libration Accura	cy	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,I4	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	50-Ω internal parallel OCT with calibration	$V_{CCIO} = 2.5, 1.8,$ 1.5, 1.2	± 10	± 10	± 10	%
20- Ω , 40- Ω , and 60- Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 (3)	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

- (1) OCT calibration accuracy is valid at the time of calibration only.
- (2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.
- (3) $20-\Omega$ R_S is not supported for 1.5 V and 1.2 V in Row I/O.

Use the following with Equation 1–1:

- \blacksquare R_{SCAL} is the OCT resistance value at power up.
- lacktriangle ΔT is the variation of temperature with respect to the temperature at power up.
- lacksquare ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- \blacksquare dR/dT is the percentage change of R_{SCAL} with temperature.
- $\,\blacksquare\,\, dR/dV$ is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Table 1–14. OCT Variation after Power-up Calibration for Arria II GX Devices

Nominal Voltage V _{CC10} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Note to Table 1-15:

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1-16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),$ and dedicated clock input pins	7	pF

⁽¹⁾ Valid for V_{CCIO} range of ±5% and temperature range of 0° to 85°C.

Table 1–19 lists the weak pull-up resistor values for Arria II GZ devices.

Table 1–19. Internal Weak Pull-Up Resistor for Arria II GZ Devices (Note 1), (2)

Symbol	Description	Conditions	Min	Тур	Max	Unit
Value of the I/O pip pull u	Value of the I/O nin null up	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (3)		25	_	kΩ
	Value of the I/O pin pull-up resistor before and during	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ
R _{PU}	configuration, as well as user	$V_{CCIO} = 1.8 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ
	mode if the programmable	$V_{CCIO} = 1.5 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ
	pull-up resistor option is enabled.	$V_{CCIO} = 1.2 \text{ V } \pm 5\%$ (3)	_	25	_	kΩ

Notes to Table 1-19:

- (1) All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins.
- (2) The internal weak pull-down feature is only available for the JTAG TCK pin. The typical value for this internal weak pull-down resistor is approximately 25 k Ω .
- (3) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Hot Socketing

Table 1–20 lists the hot-socketing specification for Arria II GX and GZ devices.

Table 1–20. Hot Socketing Specifications for Arria II Devices

Symbol	Description	Maximum
I _{IIOPIN(DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN(AC)}	AC current per I/O pin	8 mA (1)
I _{XCVRTX(DC)}	DC current per transceiver TX pin	100 mA
I _{XCVRRX(DC)}	DC current per transceiver RX pin	50 mA

Note to Table 1-20:

Schmitt Trigger Input

The Arria II GX device supports Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rates.

Table 1–21 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Arria II GX devices.

Table 1–21. Schmitt Trigger Input Hysteresis Specifications for Arria II GX Devices

Symbol	Description	scription Condition (V)						
		V _{CCIO} = 3.3	220	mV				
V	Hysteresis for Schmitt trigger input	V _{CCIO} = 2.5	180	mV				
V _{Schmitt}	Trysteresis for Schillitt trigger input	V _{CCIO} = 1.8	110	mV				
		V _{CCIO} = 1.5	70	mV				

⁽¹⁾ The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|I_{10PIN}| = C dv/dt$, in which "C" is I/O pin capacitance and "dv/dt" is slew rate.

December 2013 Altera Corporation

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1–34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/	0		13			C4			C5 and I	5		C6		11!4
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock	•		•	•										
Supported I/O Standards			1	.2-V PCML,	1.5-V P(CML, 2.5-\	/ PCML, Diff	erential LV	PECL, LVD	S, and HCS	L			
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V_{MAX} for a REFCLK pin	_	_	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V_{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	_	_	_	0.2	_	_	0.2	_	_	0.2	_	_	0.2	UI
Duty cycle	_	45	_	55	45		55	45	_	55	45		55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 3 of 5)

Symbol/ Description		_	C3 and –I3	3 (1)		-C4 and -	·14	11:4	
	Conditions	Min	Max	Unit					
Receiver DC Coupling Support	_	For more information about receiver DC coupling support, refer "DC-Coupled Links" section in the <i>Transceiver Architecture for Devices</i> chapter.							
	85– Ω setting		85 ± 20%	6		85 ± 20%	6	Ω	
Differential on-chip termination resistors	100–Ω setting		100 ± 20	%		100 ± 20°	%	Ω	
termination resistors	120–Ω setting		120 ± 20	%		120 ± 20°	%	Ω	
	150-Ω setting		150 ± 20	%		150 ± 20°	%	Ω	
Differential and common mode return loss	PCIe (Gen 1 and Gen 2), XAUI, HiGig+, CEI SR/LR, SRIO SR/LR, CPRI LV/HV, OBSAI, SATA		Compliant						
Programmable PPM detector (9)	_		± 62.5, 10	0, 125, 200,	, 250, 300	, 500, 1,00	00	ppm	
Run length	_	_	_	200	_	_	200	UI	
Programmable equalization	_	_	_	16	_	_	16	dB	
t _{LTR} (10)	_	_	_	75	_	_	75	μs	
t _{LTR_LTD_Manual} (11)	_	15	_	_	15	_	_	μs	
t _{LTD_Manual} (12)	_	_	_	4000	_	_	4000	ns	
t _{LTD_Auto} (13)	_	_	_	4000	_	_	4000	ns	
	PCIe Gen1			2.0 -	- 3.5			MHz	
	PCIe Gen2			40 -	- 65			MHz	
	(OIF) CEI PHY at 6.375 Gbps			20 -	- 35			MHz	
Receiver CDR	XAUI			10 -	- 18			MHz	
3 dB Bandwidth in	SRIO 1.25 Gbps			10 -	- 18			MHz	
lock-to-data (LTD) mode	SRIO 2.5 Gbps			10 -	- 18			MHz	
	SRIO 3.125 Gbps			6 -	10			MHz	
	GIGE			6 -	10			MHz	
	SONET OC12			3 -	- 6			MHz	
	SONET OC48			14 -	- 19			MHz	
Receiver buffer and CDR offset cancellation time (per channel)	_	_	_	17000	_	_	17000	reconfig_clk	
	DC Gain Setting = 0		0	_	_	0	—	dB	
Programmable DC gain	DC Gain Setting = 1		3			3		dB	
	DC Gain Setting = 2	_	6	_	_	6	_	dB	

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	O a malistica ma	-(C3 and –I3	(1)		-C4 and -	14	11-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
	PCIe Gen1	2.5 - 3.5							
-3 dB Bandwidth	PCIe Gen2	6 - 8							
	(OIF) CEI PHY at 4.976 Gbps	7 - 11							
	(OIF) CEI PHY at 6.375 Gbps		5 - 10						
	XAUI	2 - 4							
	SRIO 1.25 Gbps	3 - 5.5						MHz	
	SRIO 2.5 Gbps			3 -	5.5			MHz	
	SRIO 3.125 Gbps			2 -	4			MHz	
	GIGE			2.5 -	4.5			MHz	
	SONET OC12			1.5 -	2.5			MHz	
	SONET OC48			3.5	- 6			MHz	
Transceiver-FPGA Fabric In	terface								
Interface speed	_	25	_	325	25	_	250	MHz	
Digital reset pulse width	_		Minimu	ım is two pa	arallel cloc	k cycles		_	

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–37 lists the typical V_{OD} for TX term that equals $100~\Omega$ for Arria II GX and GZ devices.

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Quartus II Setting	V _{op} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Table 1-38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Arria II GX		Arria II GX (Quartus II Software) VOD Setting								
(Quartus II Software) First Post Tap Setting	1	2	4	5	6	7	Unit			
0 (off)	0	0	0	0	0	0	_			
1	0.7	0	0	0	0	0	dB			
2	2.7	1.2	0.3	0	0	0	dB			
3	4.9	2.4	1.2	0.8	0.5	0.2	dB			
4	7.5	3.8	2.1	1.6	1.2	0.6	dB			
5	_	5.3	3.1	2.4	1.8	1.1	dB			
6	_	7	4.3	3.3	2.7	1.7	dB			

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Pre- Emphasis				V _{od} S	etting			T
1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

Symbol/	0		13			C4			C5, I5	5		C6		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		> 15			> 15			> 15			> 15		UI
	Pattern = PRBS15													
	Jitter frequency = 100 KHZ		> 1.5			> 1.5	i		> 1.5			> 1.5		UI
Jitter tolerance at	Pattern = PRBS15													
2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
	Jitter frequency = 10 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
XAUI Transmit Jitter Generation (3)														
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	_		0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.17		_	0.17	_		0.17	_	_	0.17	UI
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>													
Total jitter	_		> 0.65			> 0.6	5		> 0.65	5		> 0.6	5	UI
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	i		> 8.5	l		> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
PCIe Transmit Jitt	er Generation <i>(4)</i>				•			•			•			
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	_	_	0.25	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 6 of 10)

Symbol/	0		13			C4			C5, I	5	C6			1114
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 20 KHz													
	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		>1			> 1			> 1			> 1		UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 100 KHz Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2)		> 0.2	!		> 0.2		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 1.485 Gbps (HD) Pattern =75% color bar		> 0.2			> 0.2	2		> 0.2			> 0.2		UI
SATA Transmit Jitt	ter Generation <i>(10)</i>													
Total jitter at 1.5 Gbps (G1)	Compliance pattern	_	_	0.55	_	_	0.55	_	_	0.55	_		0.55	UI
Deterministic jitter at 1.5 Gbps (G1)	Compliance pattern	_	_	0.35	_	_	0.35	_	_	0.35	_		0.35	UI
Total jitter at 3.0 Gbps (G2)	Compliance pattern	_	_	0.55	_	_	0.55	_	_	0.55	_		0.55	UI
Deterministic jitter at 3.0 Gbps (G2)	Compliance pattern		_	0.35		_	0.35	_	_	0.35	_		0.35	UI
Total jitter at 6.0 Gbps (G3)	Compliance pattern	_	_	0.52	_	_	_	_	_	_	_		_	UI
Random jitter at 6.0 Gbps (G3)	Compliance pattern	_	_	0.18	_	_	_	_	_	_	_	_	_	UI
SATA Receiver Jit	ter Tolerance (10)													
Total jitter tolerance at 1.5 Gbps (G1)	Compliance pattern		> 0.65			> 0.6	5		> 0.6	5		> 0.65	5	UI
Deterministic jitter tolerance at 1.5 Gbps (G1)	Compliance pattern		> 0.35			> 0.3	5		> 0.3	5		> 0.3	5	UI
SSC modulation frequency at 1.5 Gbps (G1)	Compliance pattern		33			33			33			33		kHz

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 7 of 10)

Symbol/	0		13			C4			C5, I	5		C6		11									
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit									
SSC modulation deviation at 1.5 Gbps (G1)	Compliance pattern		5700			5700			5700			5700		ppm									
RX differential skew at 1.5 Gbps (G1)	Compliance pattern		80			80			80			80		ps									
RX AC common mode voltage at 1.5 Gbps (G1)	Compliance pattern		150			150			150			150		mV									
Total jitter tolerance at 3.0 Gbps (G2)	Compliance pattern		> 0.65			> 0.6	5		> 0.6	ō		> 0.6	5	UI									
Deterministic jitter tolerance at 3.0 Gbps (G2)	Compliance pattern		> 0.35			> 0.3	5		> 0.3	5		> 0.3	5	UI									
SSC modulation frequency at 3.0 Gbps (G2)	Compliance pattern		33			33			33			33		kHz									
SSC modulation deviation at 3.0 Gbps (G2)	Compliance pattern		5700			5700			5700	1		5700)	ppm									
RX differential skew at 3.0 Gbps (G2)	Compliance pattern		75			75			75			75		ps									
RX AC common mode voltage at 3.0 Gbps (G2)	Compliance pattern		150			150			150			150		mV									
Total jitter tolerance at 6.0 Gbps (G3)	Compliance pattern		> 0.60			> 0.60)		> 0.60)		> 0.6	0	UI									
Random jitter tolerance at 6.0 Gbps (G3)	Compliance pattern		> 0.18			> 0.18	3		> 0.18	3		> 0.1	8	UI									
SSC modulation frequency at 6.0 Gbps (G3)	Compliance pattern		33			33			33			33		kHz									
SSC modulation deviation at 6.0 Gbps (G3)	Compliance pattern		5700		5700 5700			5700)	ppm													
RX differential skew at 6.0 Gbps (G3)	Compliance pattern	30 30		30		30		30		30		30 30		30 30		30		30			30		ps
RX AC common mode voltage at 6.0 Gbps (G3)	Compliance pattern		100			100			100			100		mV									

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

Symbol/	Oandill	-	-C3 and	-I3	-	-C4 and -	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		. 45			. 45		
	Pattern = PRBS15		> 15			> 15		UI
	Jitter frequency = 100 KHZ		. 1 5		4.5			UI
	Pattern = PRBS15		> 1.5			> 1.5		UI
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15							
	Jitter frequency = 10 MHz		> 0.15			> 0.15		UI
	Pattern = PRBS15		> 0.10			> 0.13		UI
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>							
Total jitter FC-1	Pattern = CRPAT	_		0.23	_	_	0.23	UI
Deterministic jitter FC-1	Pattern = CRPAT	_	_	0.11	_	_	0.11	UI
Total jitter FC-2	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Deterministic jitter FC-2	Pattern = CRPAT	_	_	0.2	_	_	0.2	UI
Total jitter FC-4	Pattern = CRPAT	_	_	0.52	_	_	0.52	UI
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Fibre Channel Receiver Jitter Tole	erance <i>(4)</i> , <i>(6)</i>	•						•
Deterministic jitter FC-1	Pattern = CJTPAT		> 0.37			> 0.37		UI
Random jitter FC-1	Pattern = CJTPAT		> 0.31			> 0.31		UI
Sinusoidal jitter FC-1	Fc/25000		> 1.5			> 1.5		UI
Siliusuluai jillei FG-1	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-2	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI
Siliusoluai jillei 10-2	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI
omasolaar jittor 10 4	Fc/1667		> 0.1			> 0.1		UI
XAUI Transmit Jitter Generation (7)							
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	-	_	0.17	_	_	0.17	UI
XAUI Receiver Jitter Tolerance (7)	•	•		•			
Total jitter	_	> 0.65 > 0.65					UI	
Deterministic jitter	_		> 0.37			> 0.37		UI

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

Symbol/	Conditions	-	-C3 and	-l3		-C4 and	-14	11-24	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit	
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5		UI	
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1		UI	
PCIe Transmit Jitter Generation	(8)								
Total jitter at 2.5 Gbps (Gen1)—x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	0.25	UI	
Total jitter at 5 Gbps (Gen2)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	_	UI	
PCle Receiver Jitter Tolerance (8)								
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6		UI	
Total jitter at 5 Gbps (Gen2)	Compliance pattern	N	ot suppo	rted	N	ot suppo	rted	UI	
PCIe (Gen 1) Electrical Idle Dete	ct Threshold								
V _{RX-IDLE-DETDIFFp-p} (9)	Compliance pattern	65		175	65	_	175	UI	
SRIO Transmit Jitter Generation	(10)								
Deterministic jitter	Data rate = 1.25, 2.5, 3.125 Gbps			0.17			0.17	UI	
(peak-to-peak)	Pattern = CJPAT			0.17		_	0.17	UI	
Total jitter (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_		0.35	_	_	0.35	UI	
SRIO Receiver Jitter Tolerance ((10)								
Deterministic jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37	,		> 0.37		UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55	i		> 0.55		UI	
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		UI	
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	> 0.1					UI		
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI	
GIGE Transmit Jitter Generation	(11)								
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	UI	
								+	

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Ooud!!!		-C3 and -I3			-C4 and	–14	U-22
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)	•				•		•
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	3		> 0.66	i	UI
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_	_	UI
HiGig Receiver Jitter Tolerance		•	•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65	j	_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_	_	0.3	_	_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce	•		•	•	•		•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.67	5	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.988		_	_	_	UI	

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 7 of 7)

Symbol/			-C3 and	–13		-C4 and	-C4 and -I4				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit			
OBSAI Receiver Jitter Tolerance	(15)			<u>I</u>							
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37	,		> 0.37		UI			
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	ce at 768			i		> 0.55		UI			
Cinuacidal iittar talaranaa at 700	Jitter frequency = 5.4 KHz Pattern = CJPAT	> 8.5				> 8.5					
Sinusoidal jitter tolerance at 768 Mbps	Jitter frequency = 460 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1		UI			
Sinusoidal jitter tolerance at	Jitter frequency = 10.9 KHz Pattern = CJPAT		> 8.5		> 8.5			UI			
1536 Mbps	Jitter frequency = 921.6 MHz to 20 MHz Pattern = CJPAT		> 0.1			> 0.1					
Sinusoidal jitter tolerance at	Jitter frequency = 21.8 KHz Pattern = CJPAT		> 8.5			> 8.5		UI			
3072 Mbps	Jitter frequency = 1843.2 MHz to 20 MHz Pattern = CJPAT	> 0.1				> 0.1					

Notes to Table 1-41:

- (1) Dedicated refclk pins were used to drive the input reference clocks.
- (2) The jitter numbers are valid for the stated conditions only.
- (3) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.
- (4) The jitter numbers for Fibre Channel are compliant to the FC-PI-4 Specification revision 6.10.
- (5) The Fibre Channel transmitter jitter generation numbers are compliant to the specification at the δ_T inter operability point.
- (6) The Fibre Channel receiver jitter tolerance numbers are compliant to the specification at the δ_R interpretability point.
- $(7) \quad \text{The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.}$
- (8) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.
- (9) Arria II GZ PCIe receivers are compliant to this specification provided the $V_{TX-CM-DC-ACTIVEIDLE-DELTA}$ of the upstream transmitter is less than 50 mV.
- (10) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.
- (11) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
- (12) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.
- (13) The jitter numbers for Serial Attached SCSI (SAS) are compliant to the SAS-2.1 Specification.
- (14) The jitter numbers for CPRI are compliant to the CPRI Specification V3.0.
- (15) The jitter numbers for OBSAI are compliant to the OBSAI RP3 Specification V4.1.

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1-42 lists the clock tree specifications for Arria II GX devices.

Table 1-42. Clock Tree Performance for Arria II GX Devices

Clock Network		Performance		Unit
GIOCK NGIWOIK	13, C4	C5,I5	C6	Unit
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1-43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	llnit	
GIUCK NELWURK	–C3 and –I3	-C4 and -I4	Unit
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-4 Speed Grade)		_	670 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)		_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f _{VCO}	PLL VCO operating Range (2)		_	1,400	MHz
f _{INDUTY}	Input clock duty cycle		_	60	%
f _{EINDUTY}	External feedback clock input duty cycle		_	60	%
t _{INCCJ} (3), (4)	Input clock cycle-to-cycle jitter (Frequency ≥ 100 MHz)	_	_	0.15	UI (p-p)
	Input clock cycle-to-cycle jitter (Frequency ≤ 100 MHz)	_	_	±750	ps (p-p)

Table 1-44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

Symbol	Description	Min	Тур	Max	Unit
t _{CASC} _ OUTJITTER_ PERIOD_ DEDCLK (6), (7)	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \geq 100 MHz)	_	_	425	ps (p-p)
	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \leq 100 MHz)	_	_	42.5	mUI (p-p)

Notes to Table 1-44:

- (1) f_{IN} is limited by the I/O f_{MAX} .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition:
 - a. Upstream PLL: 0.59 Mhz ≤ Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (40° to 100° C).

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

Symbol	Parameter		Тур	Max	Unit
f	Input clock frequency (–3 speed grade)		_	717 (1)	MHz
f _{IN}	Input clock frequency (-4 speed grade)	5		717 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f	PLL VCO operating range (-3 speed grade)			1,300	MHz
f _{VCO}	PLL VCO operating range (-4 speed grade)	600	_	1,300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40	_	60	%
f _{out}	Output frequency for internal global or regional clock (-3 speed grade)		_	700 (2)	MHz
	Output frequency for internal global or regional clock (–4 speed grade)	_	_	500 (2)	MHz
f _{OUT_EXT}	Output frequency for external clock output (–3 speed grade)	_	_	717 (2)	MHz
	Output frequency for external clock output (-4 speed grade)	_		717 (2)	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
t _{CONFIGPLL}	Time required to reconfigure scan chain		3.5	_	scanclk cycles
t _{CONFIGPHASE}	Time required to reconfigure phase shift	_	1	_	scanclk cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or de-assertion of areset	_	_	1	ms

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

O	Conditions	C3, I3			C4, I4			
Symbol		Min	Тур	Max	Min	Тур	Max	- Unit
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 (7)	5		717 (7)	MHz
Transmitter								
	SERDES factor, $J = 3$ to 10 (using dedicated SERDES) (β)	(4)	_	1250	(4)	_	1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) (5)	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Cumbal	Conditions	C3, I3			C4, I4			II.a.i.k
Symbol		Min	Тур	Max	Min	Тур	Max	Unit
	True differential I/O standards	_	_	200	_	_	200	ps
trise & tfall	Emulated differential I/O standards with three external output resistor networks	_	_	250	_	_	300	ps
	Emulated differential I/O standards with one external output resistor	_	_	500	_	_	500	ps
	True LVDS	_	_	100	_	_	100	ps
TCCS	Emulated LVDS_E_3R	_	_	250	_	_	250	ps
Receiver								
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)		(5)	Mbps
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps
DPA run length	DPA mode	_	_	10000	_		10000	UI
Soft-CDR PPM tolerance	Soft-CDR mode	_	_	300	_	_	300	± PPM
Sampling Window (SW)	Non-DPA mode	_	_	300	_	_	300	ps

Notes to Table 1-54:

- (1) When J = 3 to 10, use the SERDES block.
- (2) When J = 1 or 2, bypass the SERDES block.
- (3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.
- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1–55 lists DPA lock time specifications for Arria II GX and GZ devices.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.