

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	3747
Number of Logic Elements/Cells	89178
Total RAM Bits	6839296
Number of I/O	260
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	572-BGA, FCBGA
Supplier Device Package	572-FBGA, FC (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx95df25c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Arria II GX and GZ devices. All supplies are required to monotonically reach their full-rail values without plateaus within t_{RAMP} .

Table 1–5 lists the recommended operating conditions for Arria II GX devices.

Table 1-5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power to the configuration RAM bits	_	1.425	1.50	1.575	V
V _{CCBAT} (2)	Battery back-up power supply for design security volatile key registers	_	1.2	_	3.3	V
M	Supplies power to the I/O pre-drivers,		3.135	3.3	3.465	V
V _{CCPD} (3)	differential input buffers, and MSEL		2.85	3.0	3.15	V
(0)	circuitry	I	2.375	2.5	2.625	٧
			3.135	3.3	3.465	V
		_	2.85	3.0	3.15	V
V	Supplies power to the I/O banks (4)	_	2.375	2.5	2.625	V
V _{CCIO}	Supplies power to the 1/O banks (4)	_	1.71	1.8	1.89	V
		_	1.425	1.5	1.575	V
		_	1.14	1.2	1.26	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL		0.87	0.90	0.93	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	_	2.375	2.5	2.625	V
V _I	DC Input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
V _{CCA}	Supplies power to the transceiver PMA regulator	_	2.375	2.5	2.625	V
V _{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.045	1.1	1.155	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.425	1.5	1.575	V
т	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C

Use the following with Equation 1–1:

- \blacksquare R_{SCAL} is the OCT resistance value at power up.
- lacktriangle ΔT is the variation of temperature with respect to the temperature at power up.
- lacksquare ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- \blacksquare dR/dT is the percentage change of R_{SCAL} with temperature.
- $\,\blacksquare\,\, dR/dV$ is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Table 1–14. OCT Variation after Power-up Calibration for Arria II GX Devices

Nominal Voltage V _{CC10} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Note to Table 1-15:

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1-16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),$ and dedicated clock input pins	7	pF

⁽¹⁾ Valid for V_{CCIO} range of ±5% and temperature range of 0° to 85°C.

Table 1–33 lists the differential I/O standard specifications for Arria II GZ devices.

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

I/O	1	V _{CCIO} (V	1)		V _{ID} (mV)		V _{ICM(E}	_{IC)} (V)	V ₀	_D (V) <i>(</i> 3	3)	V _{OCM} (V) <i>(3)</i>		
Standard (2)	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5
Mini-LVDS (HIO)	2.375	2.5	2.625	200	l	600	0.4	1.32 5	0.25		0.6	1	1.2	1.4
Mini-LVDS (VIO)	2.375	2.5	2.625	200		600	0.4	1.32 5	0.25		0.6	1	1.2	1.5
LVPECL	2.375	2.5	2.625	300			0.6	1.8			_	_		_
BLVDS (4)	2.375	2.5	2.625	100		_	_	_	_	_	_	_	_	_

Notes to Table 1-33:

- (1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.
- (3) R_1 range: $90 \le RL \le 110 \Omega$.
- (4) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

December 2013 Altera Corporation

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1–34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/	0		13			C4			C5 and I	5		C6		11!4
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock	•		•	•										
Supported I/O Standards			1	.2-V PCML,	1.5-V P(CML, 2.5-\	/ PCML, Diff	erential LV	PECL, LVD	S, and HCS	L			
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V_{MAX} for a REFCLK pin	_	_	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V_{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	_	_	_	0.2	_	_	0.2	_	_	0.2	_	_	0.2	UI
Duty cycle	_	45	_	55	45		55	45	_	55	45		55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Chapter 1: Device Datasheet for Arria II Devices
Switching Characteristics

December 2013 Altera Corporation

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Symbol/	0		13			C4			C5 and Is	j	C6			11:4
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100	_	_	mV
V	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
V _{ICM}	V _{ICM} =1.1 V setting (7)	_	1100	_	_	1100	_	_	1100	_	_	1100	_	mV
Differential on-chip termination resistors	$100-\Omega$ setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Return loss	PCle					·		50	MHz to 1.2	25 GHz: –10d	dB			•
differential mode	XAUI							100	MHz to 2	.5 GHz: –10	dB			
Return loss	PCle							50	MHz to 1.	25 GHz: –6d	В			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	В			
Programmable PPM detector (8)	_						62.5, 100, 1 250, 300, 500							ppm
Run length	_	_	80	_	_	80	_	_	80	_	_	80	_	UI
Programmable equalization	_	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65	_	175	65	_	175	65	_	175	mV
CDR LTR time	_	_	_	75	_	_	75	_	_	75	_	_	75	μs
CDR minimum T1b (10)	_	15			15			15			15			μѕ

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 4 of 5)

Symbol/	Conditions	-	C3 and –I3	(1)		-C4 and -	14	Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter			•		•	•		•
Supported I/O Standards				1.5-V PCML				
Data rate (14)	_	600	_	6375	600	_	3750	Mbps
V _{OCM}	0.65 V setting		650	_	_	650	_	mV
	85– Ω setting		85 ± 15%	6		85 ± 15%	0	Ω
Differential on-chip	100–Ω setting		100 ± 15°	%		100 ± 159	%	Ω
termination resistors	120–Ω setting		120 ± 15°	%		120 ± 159	%	Ω
	150-Ω setting		150 ± 15°	%		150 ± 159	%	Ω
Differential and common mode return loss	PCIe Gen1 and Gen2 (TX V_{OD} =4), XAUI (TX V_{OD} =6), HiGig+ (TX V_{OD} =6), CEI SR/LR (TX V_{OD} =8), SRIO SR (V_{OD} =8), SRIO LR (V_{OD} =8), CPRI LV (V_{OD} =6), CPRI HV (V_{OD} =6), SATA (V_{OD} =4),			Comp	oliant			_
Rise time (15)	_	50		200	50		200	ps
Fall time (15)	_	50		200	50	_	200	ps
Intra-differential pair skew	_	_	_	15	_	_	15	ps
Intra-transceiver block transmitter channel-to-channel skew	×4 PMA and PCS bonded mode Example: XAUI, PCIe ×4, Basic ×4	_	_	120	_	_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	×8 PMA and PCS bonded mode Example: PCle ×8, Basic ×8	_	_	500	_	_	500	ps
CMUO PLL and CMU1 PLL								
Supported Data Range	_	600		6375	600		3750	Mbps
pll_powerdown minimum pulse width (tpll_powerdown)	_		1			1		μS
CMU PLL lock time from pll_powerdown de-assertion	_	_	_	100	_	_	100	μS

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	O a malistica ma	-(C3 and –I3	(1)		-C4 and -	14	11-14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	PCIe Gen1			2.5 -	3.5			MHz
	PCIe Gen2			6 -	8			MHz
	(OIF) CEI PHY at 4.976 Gbps			7 -	11			MHz
	(OIF) CEI PHY at 6.375 Gbps			5 -	10			MHz
-3 dB Bandwidth	XAUI			2 -	4			MHz
	SRIO 1.25 Gbps			3 -	5.5			MHz
	SRIO 2.5 Gbps			3 -	5.5			MHz
	SRIO 3.125 Gbps			2 -	4			MHz
	GIGE			2.5 -	4.5			MHz
	SONET OC12			1.5 -	2.5			MHz
	SONET OC48			3.5	- 6			MHz
Transceiver-FPGA Fabric In	terface							
Interface speed	_	25	_	325	25	_	250	MHz
Digital reset pulse width	_	Minimum is two parallel clock cycles						_

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–3 shows the differential receiver input waveform.

Figure 1-3. Receiver Input Waveform

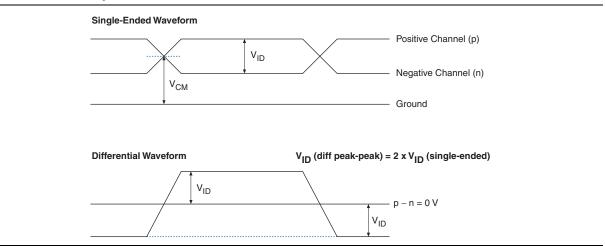


Figure 1–4 shows the transmitter output waveform.

Figure 1-4. Transmitter Output Waveform

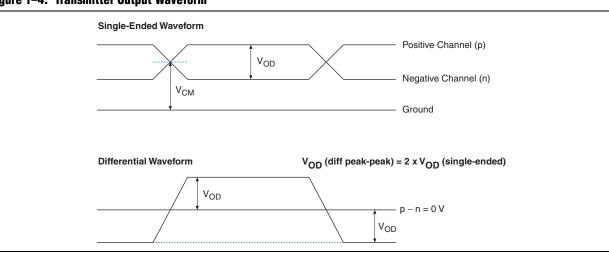


Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1–36. Typical $\mbox{V}_{\mbox{\scriptsize 0D}}$ Setting, TX Term = 85 Ω for Arria II GZ Devices

Cumbal	V _{OD} Setting (mV)									
Symbol	0	1	2	3	4	5	6	7		
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%		

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Pre-				V _{od} S	etting			
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/			13			C4			C5, I	5	C6			llni±
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	nit Jitter Generation	(2)												
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	_		0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15			0.01	_	_	0.01	_	_	0.01	_		0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15			0.01	_	_	0.01	_	_	0.01	_		0.01	UI
SONET/SDH Receiv	ver Jitter Tolerance	(2)												
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15			> 15			> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ Pattern = PRBS15		> 1.5			> 1.5			> 1.5			> 1.5		UI
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15			> 0.1	5	> 0.15			> 0.15		5	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/	0		13			C4		C5, I5			C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>	•		•				•			•		•	•
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	;		> 0.6	;		> 0.6	;	UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	<i>(9)</i>											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5)</i>								•	•		
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	_	_	0.35	UI
SRIO Receiver Jitt	er Tolerance <i>(5)</i>				I				l					1
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37		> 0.37		> 0.37			> 0.37			UI	
Combined deterministic and random jitter	Data Rate = 1.25, 2.5, 3.125 Gbps		> 0.55		> 0.55		5		> 0.5	5		> 0.5	5	UI
tolerance (peak-to-peak)	Pattern = CJPAT													
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps		> 8.5			> 8.5	j		> 8.5	i		> 8.5	j	UI
	Pattern = CJPAT													
Sinusoidal jitter	Jitter frequency = 1.875 MHz													
tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1			> 0.1			> 0.1		UI
(Fig. 1)	Pattern = CJPAT													
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1		> 0.1			> 0.1			> 0.1		UI	
	Pattern = CJPAT													
GIGE Transmit Jitt	er Generation <i>(6)</i>	•						•						•
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14		_	0.14	_	_	0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	0		13			C4			C5, I	5	C6			11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Ji	tter Tolerance <i>(12)</i>								•	•				
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT	> 0.37 > 0.37		7	> 0.37		> 0.37		UI					
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55		> 0.55		> 0.55			> 0.55			UI	
	Jitter frequency = 5.4 KHz		> 8.5		> 8.5		> 8.5			> 8.5		j	UI	
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1			> 0.1		> 0.1			> 0.1			UI
	Pattern = CJPAT													
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i i		> 8.5	j	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

Symbol/	Oandill	-	-C3 and	-I3	-	-C4 and -	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		. 45			. 45		
	Pattern = PRBS15		> 15			> 15		UI
	Jitter frequency = 100 KHZ		. 1 5			> 1.5		UI
	Pattern = PRBS15		> 1.5			> 1.0		UI
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15				UI	
	Pattern = PRBS15							
	Jitter frequency = 10 MHz		> 0.15				UI	
	Pattern = PRBS15		> 0.10			> 0.15		UI
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>							
Total jitter FC-1	Pattern = CRPAT	_		0.23	_	_	0.23	UI
Deterministic jitter FC-1	Pattern = CRPAT	_	_	0.11	_	_	0.11	UI
Total jitter FC-2	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Deterministic jitter FC-2	Pattern = CRPAT	_	_	0.2	_	_	0.2	UI
Total jitter FC-4	Pattern = CRPAT	_	_	0.52	_	_	0.52	UI
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	_	_	0.33	UI
Fibre Channel Receiver Jitter Tole	erance <i>(4)</i> , <i>(6)</i>	•						•
Deterministic jitter FC-1	Pattern = CJTPAT	> 0.37				> 0.37		UI
Random jitter FC-1	Pattern = CJTPAT	> 0.31				> 0.31		UI
Sinusoidal jitter FC-1	Fc/25000		> 1.5			> 1.5		UI
Siliusuluai jillei FG-1	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-2	Pattern = CJTPAT		> 0.29				UI	
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI
Siliusoluai jillei 10-2	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI
omasolaar jittor 10 4	Fc/1667		> 0.1			> 0.1		UI
XAUI Transmit Jitter Generation (7)							
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	-	_	0.17	_	_	0.17	UI
XAUI Receiver Jitter Tolerance (7)	•	•		•			
Total jitter	_		> 0.65			> 0.65		UI
Deterministic jitter	_	> 0.37				UI		

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Ooud!!!		–C3 and	–13	-	-C4 and	–14	U-22
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)	•				•		•
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	3		i	UI	
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_	_	UI
HiGig Receiver Jitter Tolerance		•	•					•
Deterministic jitter tolerance Data rate = 3.75 Gbps (peak-to-peak) Pattern = CJPAT			> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	> 0.65			_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT	> 8.5			_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_	_	0.3	_	_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce	•		•	•	•		•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.675		_	_	_	UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.988		_	_	_	UI	

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1-42 lists the clock tree specifications for Arria II GX devices.

Table 1-42. Clock Tree Performance for Arria II GX Devices

Clock Network		Unit		
	13, C4	C5,I5	C6	Unit
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1-43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	llnit	
GIUCK NELWURK	–C3 and –I3	–C4 and –I4	Unit
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f _{VCO}	PLL VCO operating Range (2)	600	_	1,400	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
f _{EINDUTY}	External feedback clock input duty cycle	40	_	60	%
t _{INCCJ} (3),	Input clock cycle-to-cycle jitter (Frequency ≥ 100 MHz)	_	_	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency ≤ 100 MHz)	_	_	±750	ps (p-p)

Table 1-44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

Symbol	Description	Min	Тур	Max	Unit
t _{CASC} _ OUTJITTER_	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \geq 100 MHz)	_	_	425	ps (p-p)
PERIOD_ DEDCLK (6), (7)	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \leq 100 MHz)	_	_	42.5	mUI (p-p)

Notes to Table 1-44:

- (1) f_{IN} is limited by the I/O f_{MAX} .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition:
 - a. Upstream PLL: 0.59 Mhz ≤ Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (40° to 100° C).

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
f	Input clock frequency (–3 speed grade)	5	_	717 (1)	MHz
f _{IN}	Input clock frequency (-4 speed grade)	5		717 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f	PLL VCO operating range (-3 speed grade)	600		1,300	MHz
f _{VCO}	PLL VCO operating range (-4 speed grade)	600	_	1,300	MHz
t _{EINDUTY}	Input clock or external feedback clock input duty cycle	40	_	60	%
	Output frequency for internal global or regional clock (–3 speed grade)	_	_	700 (2)	MHz
f _{OUT}	Output frequency for internal global or regional clock (–4 speed grade)	_	_	500 (2)	MHz
f	Output frequency for external clock output (-3 speed grade)	_		717 (2)	MHz
f _{OUT_EXT}	Output frequency for external clock output (-4 speed grade)	_		717 (2)	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
t _{CONFIGPLL}	Time required to reconfigure scan chain	_	3.5	_	scanclk cycles
t _{CONFIGPHASE}	Time required to reconfigure phase shift	_	1	_	scanclk cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or de-assertion of areset	_	_	1	ms

Table 1-53.	High-Speed I/O Specifications for Arria II GX Devices	(Part 4 of 4)
-------------	---	---------------

Combal	Conditions	I	3	C	34	C5	,I5	C	Unit	
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	UIIIL
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300	_	300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)	_	300	_	300	_	350	_	400	ps

Notes to Table 1-53:

- (1) $f_{HSCLK_IN} = f_{HSDR} / W$. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.
- (2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.
- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 1 of 3)

Cumbal	Conditions	C3, I3			C4, I4			IIi.t
Symbol		Min	Тур	Max	Min	Тур	Max	Unit
Clock								
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9) Clock boost factor W = 1 to 40 (3)		5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10) Clock boost factor W = 1 to 40 (3)		5	_	420	5	_	420	MHz

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

O	O and Hillians	C3, I3			C4, I4				
Symbol	Conditions	Min	Тур	Typ Max		Min Typ		Unit	
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 (7)	5	_	717 (7)	MHz	
Transmitter									
(SERDES factor, $J = 3$ to 10 (using dedicated SERDES) (β)	(4)	_	1250	(4)	_	1250	Mbps	
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps	
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps	
f _{HSDR} (emulated LVDS_E_3R output data rate) (5)	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps	
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps	
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps	
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI	
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps	
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2	_	_	0.25	UI	
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI	
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%	

Figure 1–6 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Figure 1–6. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for Arria II GZ Devices at a 1.25 Gbps Data Rate

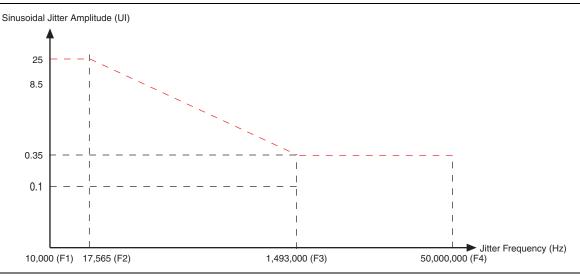


Table 1–56 lists the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at 1.25 Gbps data rate.

Table 1–56. LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for Arria II GZ Devices at 1.25 Gbps Data Rate

Jitter Freq	Sinusoidal Jitter (UI)	
F1	10,000	25.000
F2	17,565	25.000
F3	1,493,000	0.350
F4	50,000,000	0.350

External Memory Interface Specifications

For the maximum clock rate supported for Arria II GX and GZ device family, refer to the External Memory Interface Spec Estimator page on the Altera website.

Table 1–57 lists the external memory interface specifications for Arria II GX devices.

Table 1–57. External Memory Interface Specifications for Arria II GX Devices (Part 1 of 2)

Frequency	Frequency Range (MHz)			Resolution	DQS Delay	Number of
Mode	C4	13, C5, I5	C6	(°)	Buffer Mode (1)	Delay Chains
0	90-140	90-130	90-110	22.5	Low	16
1	110-180	110-170	110-150	30	Low	12
2	140-220	140-210	140-180	36	Low	10
3	170-270	170-260	170-220	45	Low	8
4	220-340	220-310	220-270	30	High	12

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions
A, B, C,	Differential I/O Standards	Single-Ended Waveform Positive Channel (p) = V _{IH} Negative Channel (n) = V _{IL} Ground Differential Waveform p - n = 0 V
D		Single-Ended Waveform Positive Channel (p) = V _{OH} Negative Channel (n) = V _{OL} Ground
		Differential Waveform $ V_{OD} $ $ p - n = 0 V $
	f _{HSCLK}	Left/Right PLL input clock frequency.
E, F	f _{HSDR}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
Г	f _{HSDRDPA}	High-speed I/O block: Maximum/minimum LVDS data transfer rate $(f_{HSDRDPA} = 1/TUI)$, DPA.

Table 1-68. Glossary (Part 4 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.
U,	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V,	V _{IH(AC)}	High-level AC input voltage.
\ \ \	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage.
	V _{IL(DC)}	Low-level DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
W,		
X, Y,	W	High-speed I/O block: The clock boost factor.
Z		

Document Revision History

Table 1–69 lists the revision history for this chapter.

Table 1-69. Document Revision History (Part 1 of 2)

Date	Version Changes	
December 2013	4.4	Updated Table 1–34 and Table 1–35.
July 2012		■ Updated the V _{CCH_GXBL/R} operating conditions in Table 1–6.
	4.3	■ Finalized Arria II GZ information in Table 1–20.
		■ Added BLVDS specification in Table 1–32 and Table 1–33.
		■ Updated input and output waveforms in Table 1–68.
December 2011	4.2	■ Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		■ Minor text edits.
June 2011		■ Added Table 1–60.
	4.1	■ Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
	4.1	Updated the "Switching Characteristics" section introduction.
		Minor text edits.