
Intel - EP2AGX95EF35C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	3747
Number of Logic Elements/Cells	89178
Total RAM Bits	6839296
Number of I/O	452
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agx95ef35c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_L}	Supplies transceiver high voltage power (left side)	-0.5	3.75	V
V _{CCA_R}	Supplies transceiver high voltage power (right side)	-0.5	3.75	V
V_{CCHIP_L}	Supplies transceiver HIP digital power (left side)	-0.5	1.35	V
V _{CCR_L}	Supplies receiver power (left side)	-0.5	1.35	V
V _{CCR_R}	Supplies receiver power (right side)	-0.5	1.35	V
V _{CCT_L}	Supplies transmitter power (left side)	-0.5	1.35	V
V _{CCT_R}	Supplies transmitter power (right side)	-0.5	1.35	V
V _{CCL_GXBLn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (left side)	-0.5	1.35	V
V _{CCL_GXBRn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (right side)	-0.5	1.35	V
V _{CCH_GXBLn} (1)	Supplies power to the transceiver PMA output (TX) buffer (left side)	-0.5	1.8	V
V _{CCH_GXBRn} (1)	Supplies power to the transceiver PMA output (TX) buffer (right side)	-0.5	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2. /	Absolute Maximum	Ratings for Arria	II GZ Devices	(Part 2 of 2)
--------------	------------------	-------------------	---------------	---------------

Note to Table 1-2:

(1) n = 0, 1, or 2.

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–3 and undershoot to -2.0 V for magnitude of currents less than 100 mA and periods shorter than 20 ns.

Table 1–3 lists the Arria II GX and GZ maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the device lifetime. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 5.41% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 5.41/10ths of a year.

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Arria II GX and GZ devices. All supplies are required to monotonically reach their full-rail values without plateaus within t_{RAMP} .

Table 1–5 lists the recommended operating conditions for Arria II GX devices.

Table 1–5. Recommended Operating Conditions for Arria II GX Devices (Note 1) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS		0.87	0.90	0.93	V
V _{CCCB}	Supplies power to the configuration RAM bits	_	1.425	1.50	1.575	V
V _{CCBAT} (2)	Battery back-up power supply for design security volatile key registers	_	1.2		3.3	V
	Supplies power to the I/O pre-drivers,		3.135	3.3	3.465	V
V _{CCPD} (3)	differential input buffers, and MSEL		2.85	3.0	3.15	V
(0)	circuitry		2.375	2.5	2.625	V
V _{CCIO} Supp		_	3.135	3.3	3.465	V
	Supplies power to the I/O banks (4)	_	2.85	3.0	3.15	V
		_	2.375	2.5	2.625	V
			1.71	1.8	1.89	V
			1.425	1.5	1.575	V
			1.14	1.2	1.26	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	_	0.87	0.90	0.93	V
V _{cca_pll}	Supplies power to the analog portions of the PLL and device-wide power management circuitry		2.375	2.5	2.625	V
VI	DC Input voltage	_	-0.5		3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
V _{CCA}	Supplies power to the transceiver PMA regulator		2.375	2.5	2.625	V
V _{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking		1.045	1.1	1.155	V
V _{CCH_GXB}	Supplies power to the transceiver PMA output (TX) buffer	_	1.425	1.5	1.575	V
TJ	Operating junction temperature	Commercial	0		85	°C
IJ		Industrial	-40		100	°C

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Ormula d	Description	Opendikione (U)	Resistance	Tolerance	11	
Symbol	Description	Conditions (V)	C3,I3	C4,14	Unit	
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%	
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%	
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%	

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Ś	Ω
Switching Characteristics	hapter 1: Device Datasheet for Arria II Devices
hin	ter
дC	
hai	Be
act	٧ic
eri	ē
stic	ata
S	she
	ĕt
	đ
	Ar
	ria
	Ξ
	Dev
	ic
	22

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 2 of 7)

Symbol/	0		13			C4		C5 and I5			C6			
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Spread-spectrum downspread	PCIe		0 to 0.5%		_	0 to 0.5%	_	_	0 to -0.5%	—	—	0 to -0.5%	_	_
On-chip termination resistors	_	_	100			100	_	_	100	_	_	100	_	Ω
V _{ICM} (AC coupled)	_		1100 ± 5%			1100 ± 5	%		1100 ± 5%	0		1100 ± 5	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	250	_	550	250	_	550	mV
	10 Hz	_	—	-50		—	-50		—	-50	_	—	-50	dBc/Hz
	100 Hz	_	—	-80		—	-80	—	—	-80	_	—	-80	dBc/Hz
Transmitter REFCLK Phase	1 KHz	_	—	-110		—	-110		—	-110	_	—	-110	dBc/Hz
Noise	10 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	100 KHz	_	—	-120		—	-120	_	—	-120	_	—	-120	dBc/Hz
	\geq 1 MHz	_	—	-130		—	-130		—	-130	—	—	-130	dBc/Hz
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz	_	_	3	_		3			3	_	_	3	ps
R _{ref}	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	_	2000 ± 1%	_	Ω
Transceiver Clock	(S													
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	10	_	125	10	_	125	MHz

Switching (Chapter 1:
Switching Characteristics	r 1: Device Datasheet for Arria II Devices
	t for Arria
	II Devices

C5 and I5 13 C4 C6 Symbol/ Condition Unit Description Min Тур Max Min Typ Max Min Typ Max Min Typ Max PCle fixedclk clock Receiver 125 125 125 125 MHz ___ ____ ___ _ ____ ____ frequency Detect Dynamic 2.5/ 2.5/ 2.5/ 2.5/ reconfig reconfig. 37.5 37.5 50 37.5 50 37.5 50 MHz clk clock 50 ____ ____ ____ ____ clock (4) (4) (4) (4) frequency frequency Delta time between 2 2 2 2 ms ____ ____ ____ ____ ____ ____ ____ ____ reconfig clks *(5)* Transceiver block minimum 1 1 1 1 μs _ ____ ____ ____ ____ ____ power-down pulse width Receiver Supported I/O 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, 2.5-V PCML, LVPECL, and LVDS Standards Data rate (13) 600 6375 3750 ____ ____ 600 3750 600 600 ____ 3125 Mbps ____ ____ Absolute V_{MAX} for a receiver pin 1.5 V 1.5 1.5 1.5 ____ ____ ____ ____ ____ ____ ____ ____ (6) Absolute V_{MIN} for -0.4 -0.4 -0.4 -0.4 V ____ ____ ____ ____ ____ ____ ____ ____ ____ a receiver pin Maximum $V_{ICM} = 0.82 V$ 2.7 2.7 2.7 2.7 V ____ ____ ____ ____ ____ ____ ____ ____ peak-to-peak setting differential input V_{ICM} =1.1 V voltage V_{ID} (diff V 1.6 1.6 1.6 1.6 ____ ____ ____ ____ ____ ____ ____ ____ setting (7) p-p)

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 3 of 7)

1-23

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 7 of 7)

Symbol/ Description	Condition		13			C4			C5 and I5	i		C6		Unit
	Conuttion	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIIIL
Digital reset pulse width	—		Minimum is 2 parallel clock cycles											

Notes to Table 1-34:

- (1) For AC-coupled links, the on-chip biasing circuit is switched off before and during configuration. Ensure that input specifications are not violated during this period.
- (2) The rise/fall time is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode. For more information, refer to *AN 558: Implementing Dynamic Reconfiguration in Arria II Devices*.
- (5) If your design uses more than one dynamic reconfiguration controller instances (altgx_reconfig) to control the transceiver channels (altgx) physically located on the same side of the device, and if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS and the link is DC-coupled.
- (8) The rate matcher supports only up to ±300 parts per million (ppm).
- (9) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1.
- (10) The time in which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1-1.
- (11) The time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1.
- (12) The time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode. Refer to Figure 1-2.
- (13) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX (Quartus II		Arria II GX (Quartus II Software) VOD Setting											
Software) First Post Tap Setting	1	2	4	5	6	7	Unit						
0 (off)	0	0	0	0	0	0	—						
1	0.7	0	0	0	0	0	dB						
2	2.7	1.2	0.3	0	0	0	dB						
3	4.9	2.4	1.2	0.8	0.5	0.2	dB						
4	7.5	3.8	2.1	1.6	1.2	0.6	dB						
5	—	5.3	3.1	2.4	1.8	1.1	dB						
6	_	7	4.3	3.3	2.7	1.7	dB						

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Pre-	V _{OD} Setting											
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7				
0	0	0	0	0	0	0	0	0				
1	N/A	0.7	0	0	0	0	0	0				
2	N/A	1	0.3	0	0	0	0	0				
3	N/A	1.5	0.6	0	0	0	0	0				
4	N/A	2	0.7	0.3	0	0	0	0				
5	N/A	2.7	1.2	0.5	0.3	0	0	0				
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0				
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0				
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0				
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2				
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3				
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4				
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6				
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6				
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7				
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8				
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9				
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1				
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2				
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4				
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5				
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7				
22	N/A	N/A	8	6.1	4.8	3.8	3	2				
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3				
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6				
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3				
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3				
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6				
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4				

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Symbol/	Oraditions		13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	- Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>				-									
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	6		> 0.6	6		> 0.6	;	UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5)</i>)										
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	_		0.35	UI
SRIO Receiver Jitt														
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.3	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI
<u> </u>	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5	5		> 8.5	j		> 8.5	i	UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													
GIGE Transmit Jitt	er Generation <i>(6)</i>	1	1		1	1		1	1		1	r		
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	-	-	0.14	_	-	0.14	_	_	0.14	-		0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

	le 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices <i>(Note 1)</i> (Part 8 of 10)										1			
Symbol/	Conditions		13			C4			C5, I	5		C6		Unit
Description	CONULIONS	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
CPRI Transmit Jitt	er Generation (11)													•
	E.6.HV, E.12.HV			0.27			0.279			0.279			0.279	UI
	Pattern = CJPAT			9			0.275			0.275			0.279	01
Total jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.35		_	0.35	_	_	0.35	_	_	0.35	UI
	Pattern = CJTPAT													
	E.6.HV, E.12.HV			0.14			0.14	_		0.14			0.14	UI
Deterministic	Pattern = CJPAT			0.14			0.14			0.14			0.14	01
jitter	E.6.LV, E.12.LV, E.24.LV, E.30.LV	_	_	0.17		_	0.17	_	_	0.17	_	_	0.17	UI
	Pattern = CJTPAT													
CPRI Receiver Jitt	ter Tolerance (11)	•	•	•				•	•		•	•	•	•
Total jitter tolerance	E.6.HV, E.12.HV Pattern = CJPAT		> 0.66			> 0.6	6		> 0.60	6		> 0.6	6	UI
Deterministic	E.6.HV, E.12.HV													
jitter tolerance	Pattern = CJPAT		> 0.4			> 0.4			> 0.4			> 0.4		UI
	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.65		> 0.65 > 0.65				> 0.6	5	UI			
Total jitter	Pattern = CJTPAT													
tolerance	E.60.LV													
	Pattern = PRBS31		> 0.6			_			_			_		UI
	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Deterministic	Pattern = CJTPAT													
jitter tolerance	E.60.LV Pattern = PRBS31		> 0.45											UI
Combined deterministic and	E.6.LV, E.12.LV, E.24.LV, E.30.LV		> 0.55			> 0.55 > 0.55		5	> 0.55		5	UI		
random jitter tolerance	Pattern = CJTPAT													
OBSAI Transmit Ji	tter Generation (12))												
Total jitter at 768 Mbps,	REFCLK = 153.6 MHz	_	_	0.35	_		0.35	_	_	0.35	_	_	0.35	UI
1536 Mbps, and 3072 Mbps	Pattern = CJPAT													
Deterministic jitter at 768 Mbps, 1536 Mbps, and 3072 Mbps	REFCLK = 153.6 MHz Pattern = CJPAT		_	0.17			0.17			0.17			0.17	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 8 of 10)

Symbol/			13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Ji	tter Tolerance (12)													
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI
	Jitter frequency = 5.4 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5	i	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1		> 0.1		UI	
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	0dittion		-C3 and	-13	-	C4 and - Typ > 15 > 1.5 > 0.15 > 0.15 - - - - - - - - - - - - - - - - - - - > 0.31 > 0.37 > 0.31 > 0.33 > 0.29 > 1.5 > 0.1 > 0.33 > 0.29 > 1.5 > 0.1 - - - - - - - - - - - - - - - - - -	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		45			45		
	Pattern = PRBS15		> 15			> 15		UI
	Jitter frequency = 100 KHZ		. 1.5			. 15		
	Pattern = PRBS15		> 1.5			> 1.5		UI
Jitter tolerance at 2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15	i		> 0.15		UI
	Pattern = PRBS15							
	Jitter frequency = 10 MHz		> 0.15			<u>\ 0 15</u>		UI
	Pattern = PRBS15		> 0.15			> 0.15		01
Fibre Channel Transmit Jitter Gen	eration <i>(4)</i> , <i>(5)</i>							
Total jitter FC-1	Pattern = CRPAT	—	_	0.23	—		0.23	UI
Deterministic jitter FC-1	Pattern = CRPAT	—	_	0.11	—		0.11	UI
Total jitter FC-2	Pattern = CRPAT	—	_	0.33	—		0.33	UI
Deterministic jitter FC-2	Pattern = CRPAT	—	_	0.2	—	_	0.2	UI
Total jitter FC-4	Pattern = CRPAT	—	_	0.52	—	_	0.52	UI
Deterministic jitter FC-4	Pattern = CRPAT	_	_	0.33	—		0.33	UI
Fibre Channel Receiver Jitter Tol	erance <i>(4), (6)</i>							
Deterministic jitter FC-1	Pattern = CJTPAT		> 0.37	,		> 0.37		UI
Random jitter FC-1	Pattern = CJTPAT		> 0.31			> 0.31		UI
Sinusoidal jitter FC-1	Fc/25000		> 1.5			> 1.5		UI
	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-2	Pattern = CJTPAT		> 0.33	}		> 0.33		UI
Random jitter FC-2	Pattern = CJTPAT		> 0.29)		> 0.29		UI
Sinusoidal jitter FC-2	Fc/25000		> 1.5			> 1.5		UI
	Fc/1667		> 0.1			> 0.1		UI
Deterministic jitter FC-4	Pattern = CJTPAT		> 0.33			> 0.33		UI
Random jitter FC-4	Pattern = CJTPAT		> 0.29			> 0.29		UI
Sinusoidal jitter FC-4	Fc/25000		> 1.5			> 1.5		UI
	Fc/1667		> 0.1			> 0.1		UI
XAUI Transmit Jitter Generation ((7)							
Total jitter at 3.125 Gbps	Pattern = CJPAT		_	0.3	—		0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_		0.17			0.17	UI
XAUI Receiver Jitter Tolerance (7	7)							
Total jitter	—		> 0.65	;		> 0.65		UI
Deterministic jitter	—		> 0.37	,		> 0.37		UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 2 of 7)

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1–46.	DSP Block Performance	e Specifications for	Arria II GX Devices	(Note 1)
-------------	-----------------------	----------------------	---------------------	----------

Mada	Resources Used		Perfor	mance	iance			
Mode	Number of Multipliers	C4	13	C5,I5	C6	– Unit		
9 × 9-bit multiplier	1	380	310	300	250	MHz		
12 × 12-bit multiplier	1	380	310	300	250	MHz		
18 × 18-bit multiplier	1	380	310	300	250	MHz		
36 × 36-bit multiplier	1	350	270	270	220	MHz		
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz		
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz		
18 × 18-bit multiply adder	4	380	310	300	250	MHz		
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz		
18 × 18-bit multiply adder with loopback (2)	2	275	220	220	180	MHz		
36-bit shift (32-bit data)	1	350	270	270	220	MHz		
Double mode	1	350	270	270	220	MHz		

Notes to Table 1-46:

(1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.

(2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Mode	Resources Used	Perfor	nance	Unit
Muue	Number of Multipliers	-3	-4	
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 × 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Mada	Resources Used Number of Multipliers	Perforr	11	
Mode	Number of Multipliers	-3	-4	Unit
Double mode	1	440	380	MHz

Table 1–47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Notes to Table 1-47:

(1) Maximum is for fully pipelined block with Round and Saturation disabled.

(2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1-48 lists the embedded memory block specifications for Arria II GX devices.

Table 1–48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used		Perfo	rmance		
Memory	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Logic Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
Block (MLAB)	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
M9K Block	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)	—	—	900	850	950	1130	ps
	Min Pulse Width (clock low time)	_		730	690	770	920	ps

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Ormshall	Oanditiana		3	C	4	C5	, I 5	(6	11
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Clock				·		<u>.</u>	-	<u>.</u>	-	
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

0hal	Oanditiana	13		C4		C5,I5		C6		11
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	True LVDS with dedicated SERDES (data rate 600–1,250 Mbps)		175		175		225		300	ps
	True LVDS with dedicated SERDES (data rate < 600 Mbps)		0.105	_	0.105	_	0.135	_	0.18	UI
t _{tx_jitter} <i>(4)</i>	True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate 600 - 945 Mbps)		260	l	260		300		350	ps
	True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate < 600 Mbps)		0.16	_	0.16	_	0.18	_	0.21	UI
t _{TX_DCD}	True LVDS and emulated LVDS_E_3R	45	55	45	55	45	55	45	55	%
t_{RISE} and t_{FALL}	True LVDS and emulated LVDS_E_3R		200	_	200	_	225	_	250	ps
TCCS	True LVDS (5)	_	150	_	150	_	175	_	200	ps
1005	Emulated LVDS_E_3R		200	_	200		250	_	300	ps
Receiver <i>(6)</i>								•		
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	1250	150	1250	150	1050	150	840	Mbps

Table 1–60 lists the DQS phase shift error for Arria II GX devices.

Number of DQS Delay Buffer	C4	13, C5, 15	C6	Unit
1	26	30	36	ps
2	52	60	72	ps
3	78	90	108	ps
4	104	120	144	ps

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GX Devices (*Note 1*)

Note to Table 1-60:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61.DQS Phase Shift Error Specification for DLL-Delayed Clock (t _{DQS PSERR}) for Arria II (GZ
Devices (Note 1)	

Number of DQS Delay Buffer	-3	-4	Unit
1	28	30	ps
2	56	60	ps
3	84	90	ps
4	112	120	ps

Note to Table 1-61:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

 Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

Parameter	Clock	Symbol	-	4	_	5	-	6	Unit
raiametei	Network	Symbol	Min	Max	Min	Max	Min	Max	UIII
Clock period jitter	Global	$t_{JIT(per)}$	-100	100	-125	125	-125	125	ps
Cycle-to-cycle period jitter	Global	$t_{JIT(cc)}$	-200	200	-250	250	-250	250	ps
Duty cycle jitter	Global	$t_{JIT(duty)}$	-100	100	-125	125	-125	125	ps

Notes to Table 1-62:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.

(3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Parameter	Clock	Gumbal	-	-3 -4		4	- Unit	
Farameter	Network	Symbol	Min	Max	Min	Max	Unit	
Clock period jitter	Regional	$t_{JIT(per)}$	-55	55	-55	55	ps	
Cycle-to-cycle period jitter	Regional	t _{JIT(cc)}	-110	110	-110	110	ps	
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps	
Clock period jitter	Global	$t_{\text{JIT}(\text{per})}$	-82.5	82.5	-82.5	82.5	ps	
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-165	165	-165	165	ps	
Duty cycle jitter	Global	t _{JIT(duty)}	-90	90	-90	90	ps	

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	ycle Distortion	on I/O Pins	for Arria II G	X Devices	(Note 1))
	Duty O	JOID DIOLOILION			/ BO11000	11010 1/	,

Symbol	C4		13, C5, 15		C6		Unit
Symbol	Min	Max	Min	Max	Min	Max	UIII
Output Duty Cycle	45	55	45	55	45	55	%

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Sumbol	C	3, 13	C	Unit	
Symbol	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Letter	Subject	Definitions					
S	Subject SW (sampling window) Single-ended Voltage Referenced I/O Standard	Definitions The period of time during which the data must be valid in order to capture it correctly. The setup and hold times determine the ideal strobe position within the sampling window: Timing Diagram Bit Time District District </th					
	•	High-speed receiver and transmitter input and output clock period.					
	t _C TCCS (channel-to- channel- skew)	The timing difference between the fastest and slowest output edges, including t_{c0} variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the <i>Timing Diagram</i> figure under S in this table).					
		High-speed I/O block: Duty cycle on the high-speed transmitter output clock.					
_	t _{DUTY}	Timing Unit Interval (TUI)					
Т	5011	The timing budget allowed for skew, propagation delays, and data sampling window. $(TUI = 1/(Receiver Input Clock Frequency Multiplication Factor) = t_C/w)$					
	t _{FALL}	Signal high-to-low transition time (80-20%)					
	t _{INCCJ}	Cycle-to-cycle jitter tolerance on the PLL clock input.					
	t _{outpj_i0}	Period jitter on the general purpose I/O driven by a PLL.					
	t outpj_dc	Period jitter on the dedicated clock output driven by a PLL.					

 Table 1–68. Glossary (Part 3 of 4)

Letter	Subject	Definitions		
U,	V _{CM(DC)}	DC common mode input voltage.		
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.		
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.		
V,	V _{IH(AC)}	High-level AC input voltage.		
	V _{IH(DC)}	High-level DC input voltage.		
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.		
	V _{IL(AC)}	Low-level AC input voltage.		
	V _{IL(DC)}	Low-level DC input voltage.		
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.		
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.		
W,				
Х,	w	Llich around 1/0 block. The alexy boost factor		
Y,	vv	High-speed I/O block: The clock boost factor.		
Z				

Document Revision History

Table 1–69 lists the revision history for this chapter.

 Table 1–69. Document Revision History (Part 1 of 2)

Date	Version	Changes
December 2013	4.4	Updated Table 1–34 and Table 1–35.
	4.3	 Updated the V_{CCH_GXBL/R} operating conditions in Table 1–6.
July 2012		 Finalized Arria II GZ information in Table 1–20.
July 2012		 Added BLVDS specification in Table 1–32 and Table 1–33.
		 Updated input and output waveforms in Table 1–68.
December 2011	4.2	 Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		 Minor text edits.
	4.1	Added Table 1–60.
lune 0011		Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
June 2011		 Updated the "Switching Characteristics" section introduction.
		 Minor text edits.