
E·XFL

Intel - EP2AGZ300FF35C3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Betans	
Product Status	Obsolete
Number of LABs/CLBs	11920
Number of Logic Elements/Cells	298000
Total RAM Bits	18854912
Number of I/O	554
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agz300ff35c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_L}	Supplies transceiver high voltage power (left side)	-0.5	3.75	V
V _{CCA_R}	Supplies transceiver high voltage power (right side)	-0.5	3.75	V
V_{CCHIP_L}	Supplies transceiver HIP digital power (left side)	-0.5	1.35	V
V _{CCR_L}	Supplies receiver power (left side)	-0.5	1.35	V
V _{CCR_R}	Supplies receiver power (right side)	-0.5	1.35	V
V _{CCT_L}	Supplies transmitter power (left side)	-0.5	1.35	V
V _{CCT_R}	Supplies transmitter power (right side)	-0.5	1.35	V
V _{CCL_GXBLn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (left side)	-0.5	1.35	V
V _{CCL_GXBRn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (right side)	-0.5	1.35	V
V _{CCH_GXBLn} (1)	Supplies power to the transceiver PMA output (TX) buffer (left side)	-0.5	1.8	V
V _{CCH_GXBRn} (1)	¹ Supplies power to the transceiver PMA output (TX) buffer (right side)		1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2. /	Absolute Maximum	Ratings for Arria	II GZ Devices	(Part 2 of 2)
--------------	------------------	-------------------	---------------	---------------

Note to Table 1-2:

(1) n = 0, 1, or 2.

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–3 and undershoot to -2.0 V for magnitude of currents less than 100 mA and periods shorter than 20 ns.

Table 1–3 lists the Arria II GX and GZ maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the device lifetime. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 5.41% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 5.41/10ths of a year.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Ormula d	Description	Opendikione (U)	Resistance	Tolerance	11	
Symbol	Description	Conditions (V)	C3,I3	C4,14	Unit	
25-Ω R _s 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
25-Ω R _s 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%	
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%	
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%	
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%	
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%	

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Use the following with Equation 1–1:

- R_{SCAL} is the OCT resistance value at power up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V_{CCIO} at power up.
- dR/dT is the percentage change of R_{SCAL} with temperature.
- dR/dV is the percentage change of R_{SCAL} with voltage.

Table 1–14 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GX devices.

Nominal Voltage V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	0.035
2.5	0.234	0.039
1.8	0.219	0.086
1.5	0.199	0.136
1.2	0.161	0.288

Table 1–15 lists the OCT variation with temperature and voltage after power-up calibration for Arria II GZ devices.

Nominal Voltage, V _{ccio} (V)	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.189	0.0297
2.5	0.208	0.0344
1.8	0.266	0.0499
1.5	0.273	0.0744
1.2	0.317	0.1241

Table 1–15. OCT Variation after Power-Up Calibration for Arria II GZ Devices (Note 1)

Note to Table 1-15:

(1) Valid for V_{CCI0} range of $\pm 5\%$ and temperature range of 0° to $85^\circ C.$

Pin Capacitance

Table 1–16 lists the pin capacitance for Arria II GX devices.

Table 1–16. Pin Capacitance for Arria II GX Devices

Symbol	Description	Typical	Unit
C ₁₀	Input capacitance on I/O pins, dual-purpose pins (differential I/O, clock, $R_{up},R_{dn}),and$ dedicated clock input pins	7	pF

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1-34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/		13			C4		C5 and I5		C6					
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								÷	•	•	•			
Supported I/O Standards			1	.2-V PCML,	1.5-V PC	CML, 2.5-V	/ PCML, Diff	erential LV	PECL, LVD	S, and HCS	L			
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V _{MAX} for a REFCLK pin	_	—	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V _{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	—	—	—	0.2			0.2		—	0.2			0.2	UI
Duty cycle	—	45	—	55	45	_	55	45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Switching (Chapter 1:
Switching Characteristics	r 1: Device Datasheet for Arria II Devices
	t for Arria
	II Devices

C5 and I5 13 C4 C6 Symbol/ Condition Unit Description Min Тур Max Min Typ Max Min Typ Max Min Typ Max PCle fixedclk clock Receiver 125 125 125 125 MHz ___ ____ ___ _ ____ ____ frequency Detect Dynamic 2.5/ 2.5/ 2.5/ 2.5/ reconfig reconfig. 37.5 37.5 50 37.5 50 37.5 50 MHz clk clock 50 ____ ____ ____ ____ clock (4) (4) (4) (4) frequency frequency Delta time between 2 2 2 2 ms ____ ____ ____ ____ ____ ____ ____ ____ reconfig clks *(5)* Transceiver block minimum 1 1 1 1 μs _ ____ ____ ____ ____ ____ power-down pulse width Receiver Supported I/O 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, 2.5-V PCML, LVPECL, and LVDS Standards Data rate (13) 600 6375 3750 ____ ____ 600 3750 600 600 ____ 3125 Mbps ____ ____ Absolute V_{MAX} for a receiver pin 1.5 V 1.5 1.5 1.5 ____ ____ ____ ____ ____ ____ ____ ____ (6) Absolute V_{MIN} for -0.4 -0.4 -0.4 -0.4 V ____ ____ ____ ____ ____ ____ ____ ____ ____ a receiver pin Maximum $V_{ICM} = 0.82 V$ 2.7 2.7 2.7 2.7 V ____ ____ ____ ____ ____ ____ ____ ____ peak-to-peak setting differential input V_{ICM} =1.1 V voltage V_{ID} (diff V 1.6 1.6 1.6 1.6 ____ ____ ____ ____ ____ ____ ____ ____ setting (7) p-p)

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 3 of 7)

1-23

Š	₽
vitch	apt
iing	ıpter 1
C	••
Switching Characteristics	1: Device C
eri	e
sti	ă
S	as
	he
	et -
	Datasheet for Arria II Devices
	Þ
	Ę.
	=
	ev.
	Ĉ
	õ

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/	0		13			C4			C5 and IS	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_		_	4000	_	_	4000			4000	_	_	4000	ns
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3		_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6		_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	—	600	—	6375	600		3750	600	—	3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	—	650	_	_	650	_	_	650	—	_	650		mV
Differential on-chip termination resistors	100–Ω setting		100		_	100			100		_	100		Ω
Return loss	PCIe		1	1			50 MHz to	1.25 GHz:	-10dB					
differential mode	XAUI		312 MHz to 625 MHz: –10dB 625 MHz to 3.125 GHz: –10dB/decade slope											
Return loss common mode	PCIe		50 MHz to 1.25 GHz: –6dB											
Rise time (2)	—	50	—	200	50		200	50	—	200	50	—	200	ps
Fall time		50		200	50	_	200	50		200	50	_	200	ps

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

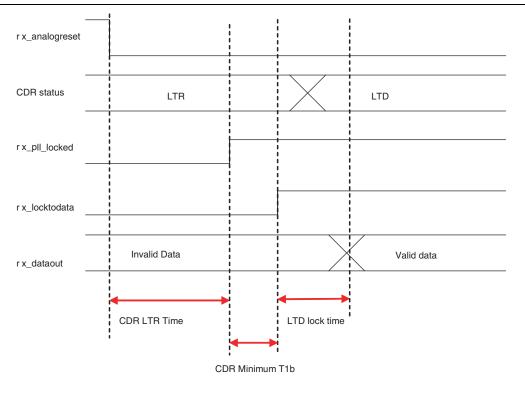


Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

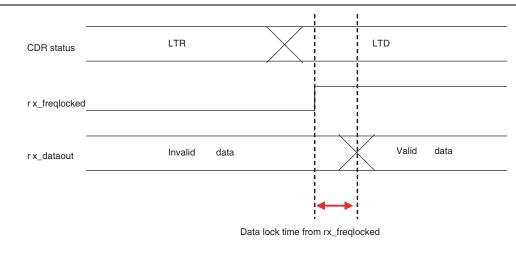


Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX (Quartus II		Arria II GX (Quartus II Software) VOD Setting											
Software) First Post Tap Setting	1	2	4	5	6	7	Unit						
0 (off)	0	0	0	0	0	0	—						
1	0.7	0	0	0	0	0	dB						
2	2.7	1.2	0.3	0	0	0	dB						
3	4.9	2.4	1.2	0.8	0.5	0.2	dB						
4	7.5	3.8	2.1	1.6	1.2	0.6	dB						
5	—	5.3	3.1	2.4	1.8	1.1	dB						
6	_	7	4.3	3.3	2.7	1.7	dB						

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Pre-		V _{OD} Setting											
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7					
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3					
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A					
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A					

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/			13			C4			C5, I	5		C6		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	nit Jitter Generation	<i>(2)</i>												
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15			0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.01	_	_	0.01	_	_	0.01	_	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.01	_	—	0.01	_		0.01	_	_	0.01	UI
SONET/SDH Receiv	ver Jitter Tolerance	(2)												
	Jitter frequency = 0.03 KHz		> 15			> 15			> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Pattern = PRBS15 Jitter frequency = 25 KHZ Pattern = PRBS15		> 1.5			> 1.5	i		> 1.5			> 1.5	i	UI
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15			> 0.1	5		> 0.1	5		> 0.1	5	UI

	eiver Block Jitter S						1	, (00		
Symbol/ Description	Conditions		13	1		C4			C5, I			C6		Unit
-		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Total jitter (peak-to-peak)	Pattern = CRPAT	_	—	0.27 9		_	0.279	_	_	0.279	_	_	0.279	UI
GIGE Receiver Jitt	er Tolerance <i>(6)</i>													
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4	ļ		> 0.4			> 0.4	ļ	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66			> 0.6	6		> 0.6	6		> 0.6	6	UI
HiGig Transmit Jit	ter Generation (7)													
Deterministic jitter	Data rate = 3.75 Gbps	_	_	0.17	_	_	0.17	_	_	_	_			UI
(peak-to-peak)	Pattern = CJPAT													
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps	_	_	0.35	_	_	0.35	_	_	_	_	_	_	UI
	Pattern = CJPAT													
HiGig Receiver Jit								1			1			1
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37			> 0.3	7	_	_	—	_	—	—	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65			> 0.6	5			_				UI
	Jitter frequency = 22.1 KHz													
	Data rate = 3.75 Gbps		> 8.5			> 8.5	5	_	_	—	_	_	—	UI
	Pattern = CJPAT													
Sinusoidal jitter	Jitter frequency = 1.875MHz													
tolerance (peak-to-peak)	Data rate = 3.75 Gbps		> 0.1			> 0.1		_		_	_	_	_	UI
	Pattern = CJPAT													
	Jitter frequency = 20 MHz													
	Data rate = 3.75 Gbps		> 0.1			> 0.1		-	-	—	-	_	—	UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 4 of 10)

Symbol/	Osadikisas		-C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz	> 0.1			> 0.1			UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1		UI
PCIe Transmit Jitter Generation	(8)							
Total jitter at 2.5 Gbps (Gen1)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	0.25	UI
tal jitter at 5 Gbps (Gen2)— , x4, and x8 Compliance pattern		_	_	0.25	_	_		UI
PCIe Receiver Jitter Tolerance (8)							
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6		UI
Total jitter at 5 Gbps (Gen2)	Compliance pattern	N	lot suppo	orted	N	ot suppo	rted	UI
PCIe (Gen 1) Electrical Idle Dete	ct Threshold							
V _{RX-IDLE-DETDIFFp-p} (9)	Compliance pattern	65	—	175	65	—	175	UI
SRIO Transmit Jitter Generation	(10)			1				
Deterministic jitter	Data rate = 1.25, 2.5, 3.125 Gbps							
(peak-to-peak)	Pattern = CJPAT	-	-	0.17	_	-	0.17	UI
Total jitter (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	-	_	0.35	UI
SRIO Receiver Jitter Tolerance (10)					1		
Deterministic jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37	,		> 0.37	,	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55		> 0.5			UI
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1		> 0.			UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
GIGE Transmit Jitter Generation	(11)							
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	UI
Total jitter (peak-to-peak)	Pattern = CRPAT			0.279			0.279	UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

Symbol/	O and l'it's and		-C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)		-					
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4			> 0.4			UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	;		> 0.66		UI
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_		UI
HiGig Receiver Jitter Tolerance								
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	> 0.65		_	_		UI	
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT	> 0.1			_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_		0.3		_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce		•					•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.675		_	_	_	UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²	> 0.988		-	_		UI	

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Table 1–49 lists the embedded memory block specifications for Arria II GZ devices.

		Resou	rces Used		Perfor	mance		
Memory	Mode	ALUTS	TriMatrix Memory	C3	13	C4	14	Unit
	Single port 64 × 10	0	1	500	500	450	450	MHz
	Simple dual-port 32 × 20	0	1	500	500	450	450	MHz
MLAB <i>(2)</i>	Simple dual-port 64 × 10	0	1	500	500	450	450	MHz
(2)	ROM 64 × 10	0	1	500	500	450	450	MHz
	ROM 32 × 20	0	1	500	500	450	450	MHz
	Single-port 256 × 36	0	1	540	540	475	475	MHz
	Simple dual-port 256 × 36	0	1	490	490	420	420	MHz
	Simple dual-port 256 × 36, with the read-during-write option set to Old Data	0	1	340	340	300	300	MHz
	True dual port 512 × 18	0	1	430	430	370	370	MHz
M9K Block <i>(2)</i>	True dual-port 512 × 18, with the read-during-write option set to Old Data	0	1	335	335	290	290	MHz
	ROM 1 Port	0	1	540	540	475	475	MHz
	ROM 2 Port	0	1	540	540	475	475	MHz
	Min Pulse Width (clock high time)		—	800	800	850	850	ps
	Min Pulse Width (clock low time)	_		625	625	690	690	ps
	Single-port 2K × 72	0	1	440	400	380	350	MHz
	Simple dual-port 2K × 72	0	1	435	375	385	325	MHz
	Simple dual-port 2K × 72, with the read-during-write option set to Old Data	0	1	240	225	205	200	MHz
	Simple dual-port 2K × 64 (with ECC)	0	1	300	295	255	250	MHz
M144K	True dual-port 4K × 36	0	1	375	350	330	310	MHz
Block (2)	True dual-port 4K × 36, with the read-during-write option set to Old Data	0	1	230	225	205	200	MHz
	ROM 1 Port	0	1	500	450	435	420	MHz
	ROM 2 Port	0	1	465	425	400	400	MHz
	Min Pulse Width (clock high time)	—	—	755	860	860	950	ps
	Min Pulse Width (clock low time)	_	—	625	690	690	690	ps

Table 1–49.	Embedded Memory Bl	ck Performance Spe	cifications for Arria	II GZ Devices	(Note 1)
-------------	--------------------	--------------------	-----------------------	---------------	----------

Notes to Table 1-48:

(2) When you use the error detection CRC feature, there is no degradation in F_{MAX}

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to 50% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

Configuration

Table 1–50 lists the configuration mode specifications for Arria II GX and GZ devices.

Drogromming Modo	D	CY	Unit	
Programming Mode	Min	Тур	Max	UIIIL
Passive serial	—	—	125	MHz
Fast passive parallel	—	—	125	MHz
Fast active serial (fast clock)	17	26	40	MHz
Fast active serial (slow clock)	8.5	13	20	MHz
Remote update only in fast AS mode			10	MHz

Table 1–50. Configuration Mode Specifications for Arria II Devices

JTAG Specifications

Table 1–51 lists the JTAG timing parameters and values for Arria II GX and GZ devices.

Symbol	Description	Min	Max	Unit
t _{JCP}	TCK clock period	30	—	ns
t _{JCH}	TCK clock high time	14	—	ns
t _{JCL}	TCK clock low time	14	—	ns
t _{JPSU (TDI)}	TDI JTAG port setup time	1	—	ns
t _{JPSU (TMS)}	TMS JTAG port setup time	3	—	ns
t _{JPH}	JTAG port hold time	5	—	ns
t _{JPC0}	JTAG port clock to output	—	11	ns
t _{JPZX}	JTAG port high impedance to valid output	—	14	ns
t _{JPXZ}	JTAG port valid output to high impedance	—	14	ns

 Table 1–51. JTAG Timing Parameters and Values for Arria II Devices

Chip-Wide Reset (Dev_CLRn) Specifications

Table 1–52 lists the specifications for the chip-wide reset (Dev_CLRn) for Arria II GX and GZ devices.

Table 1–52. Chip-Wide Reset (Dev_CLRn) Specifications for Arria II Devices

Description	Min	Тур	Max	Unit
Dev_CLRn	500			μS

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several system interfaces, for example the high-speed I/O interface, external memory interface, and the PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O (GPIO) standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10pF load.

Actual achievable frequency depends on design- and system-specific factors. You should perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

High-Speed I/O Specification

Table 1–53 lists the high-speed I/O timing for Arria II GX devices.

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 1 of 4)

Ormshall	Oanditiana		3	C4		C5,I5		C6		Unit
Symbol (Conditions	Min	Max	Min	Max	Min	Max	Min	Max	UNIT
Clock				·		<u>.</u>	-	<u>.</u>	-	
f _{HSCLK_IN} (input clock frequency)–Row I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_IN} (input clock frequency)– Column I/O	Clock boost factor, W = 1 to 40 <i>(1)</i>	5	500	5	500	5	472.5	5	472.5	MHz
f _{HSCLK_OUT} (output clock frequency)–Row I/O	_	5	670	5	670	5	622	5	500	MHz
f _{HSCLK_OUT} (output clock frequency)– Column I/O	_	5	500	5	500	5	472.5	5	472.5	MHz

Symbol	Conditions	I	13 C4		4	C5,I5		C6		Unit
Symbol	Gomarcions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 (7)	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300		300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000		10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300	_	300		350	_	400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Symbol	Oradikiran		C3, I3			C4, I4			
	Conditions	Min	Тур	Мах	Min	Тур	Мах	Unit	
Clock		<u>.</u>				<u>.</u>			
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz	
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(9)</i>	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz	
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(10)</i>	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz	

Frequency	Frequency Range (MHz)		cy Frequency Range (MHz)		Resolution	DQS Delay	Number of
Mode	C4	C4 I3, C5, I5 C6		(°)	Buffer Mode <i>(1)</i>	Delay Chains	
5	270-410	270-380	270-320	36	High	10	
6	320-450	320-410	320-370	45	High	8	

Table 1–57	. External Memory	Interface	Specifications	for Arria II GX	Devices	(Part 2 of 2)
------------	-------------------	-----------	----------------	-----------------	---------	---------------

Note to Table 1-57:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–58 lists the DLL frequency range specifications for Arria II GZ devices.

Francisco Manda	Frequency I	Range (MHz)	Augilable Dhage Ohiff	DQS Delay	Number of
Frequency Mode	-3	-4	Available Phase Shift	Buffer Mode <i>(1)</i>	Delay Chains
0	90-130	90-120	22.5°, 45°, 67.5°, 90°	Low	16
1	120-170	120-160	30°, 60°, 90°, 120°	Low	12
2	150-210	150-200	36°, 72°, 108°, 144°	Low	10
3	180-260	180-240	45°, 90°,135°, 180°	Low	8
4	240-320	240-290	30°, 60°, 90°, 120°	High	12
5	290-380	290-360	36°, 72°, 108°, 144°	High	10
6	360-450	360-450	45°, 90°, 135°, 180°	High	8
7	470-630	470-590	60°, 120°, 180°, 240°	High	6

Note to Table 1–58:

(1) Low indicates a 6-bit DQS delay setting; high indicates a 5-bit DQS delay setting.

Table 1–59 lists the DQS phase offset delay per stage for Arria II GX devices.

Table 1–59. DQS Phase Offset Delay Per Setting for Arria II GX Devices (Note 1), (2), (3)	Table 1–59	. DQS Phase Offset Dela	y Per Setting for Arria II GX Device	s (Note 1), (2),	(3)
---	------------	-------------------------	--------------------------------------	------------------	-----

Speed Grade	Min	Max	Unit
C4	7.0	13.0	ps
13, C5, 15	7.0	15.0	ps
C6	8.5	18.0	ps

Notes to Table 1-59:

(1) The valid settings for phase offset are -64 to +63 for frequency modes 0 to 3 and -32 to +31 for frequency modes 4 to 5.

(2) The typical value equals the average of the minimum and maximum values.

(3) The delay settings are linear.

Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Parameter	Clock Symi Network Symi	Gumbal	-	3	-	4	11-1-1
		Symbol	Min	Max	Min	Max	Unit
Clock period jitter	Regional	$t_{JIT(per)}$	-55	55	-55	55	ps
Cycle-to-cycle period jitter	Regional	t _{JIT(cc)}	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	$t_{\text{JIT}(\text{per})}$	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-165	165	-165	165	ps
Duty cycle jitter	Global	t _{JIT(duty)}	-90	90	-90	90	ps

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	ycle Distortion	on I/O Pins	for Arria II G	X Devices	(Note 1)
	Duty O	JOID DIOLOILION				11010 1	

Symbol	C4		13, C5, 15			C6	Unit
Symbol	Min	Max	Min	Max	Min	Max	UIII
Output Duty Cycle	45	55	45	55	45	55	%

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Sumbol	C	3, 13	C	Unit	
Symbol	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1-66.	IOE Prog	rammable Dela	y for Arria II	GX Devices
-------------	----------	---------------	----------------	------------

	Available	Minimum	Maximum Offset								
Parameter	Settings		Fast Model		Slow Model					Unit	
	(1)		13	C4	15	13	C4	C5	15	C6	
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

(1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.

(2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67 lists the IOE	orogrammable delay	y settings for Arria	II GZ devices.

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

	Available			Max	kimum Off	set			
Parameter	Settings	Minimum Offset <i>(2)</i>	Fast		Unit				
	(1)		Industrial Commercial	C3	13	C4	14		
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns

Notes to Table 1-67:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.

(2) Minimum offset does not include the intrinsic delay.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.