
E·XFL

Intel - EP2AGZ300FF35C4N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	11920
Number of Logic Elements/Cells	298000
Total RAM Bits	18854912
Number of I/O	554
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agz300ff35c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_L}	Supplies transceiver high voltage power (left side)	-0.5	3.75	V
V _{CCA_R}	Supplies transceiver high voltage power (right side)	-0.5	3.75	V
V_{CCHIP_L}	Supplies transceiver HIP digital power (left side)	-0.5	1.35	V
V _{CCR_L}	Supplies receiver power (left side)	-0.5	1.35	V
V _{CCR_R}	Supplies receiver power (right side)	-0.5	1.35	V
V _{CCT_L}	Supplies transmitter power (left side)	-0.5	1.35	V
V _{CCT_R}	Supplies transmitter power (right side)	-0.5	1.35	V
V _{CCL_GXBLn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (left side)	-0.5	1.35	V
V _{CCL_GXBRn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (right side)	-0.5	1.35	V
V _{CCH_GXBLn} (1)	Supplies power to the transceiver PMA output (TX) buffer (left side)	-0.5	1.8	V
V _{CCH_GXBRn} (1)	Supplies power to the transceiver PMA output (TX) buffer (right side)	-0.5	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2. /	Absolute Maximum	Ratings for Arria	II GZ Devices	(Part 2 of 2)
--------------	------------------	-------------------	---------------	---------------

Note to Table 1–2:

(1) n = 0, 1, or 2.

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–3 and undershoot to -2.0 V for magnitude of currents less than 100 mA and periods shorter than 20 ns.

Table 1–3 lists the Arria II GX and GZ maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the device lifetime. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 5.41% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 5.41/10ths of a year.

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1 A/1 E (E)	1.575	V
V _{CCH_GXBRn} (3)	Transmitter output buffer power (right side)	_	1.33/1.423	1.4/1.5 <i>(5)</i>		v
т	Operating junction temperature	Commercial	0	_	85	°C
TJ	Operating junction temperature	Industrial	-40	_	100	°C
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	—	100	ms
t _{RAMP}		Fast POR (PORSEL=1)	0.05	_	4	ms

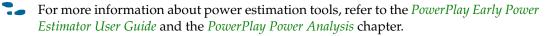
Notes to Table 1-6:

 Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(2) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(3) n = 0, 1, or 2.

(4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.


- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

I/O Pin Leakage Current

Table 1–7 lists the Arria II GX I/O pin leakage current specifications.

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	-10	—	10	μA
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$	-10	—	10	μA

Table 1–7. I/O Pin Leakage Current for Arria II GX Devices

Table 1–8 lists the Arria II GZ I/O pin leakage current specifications.

Table 1–8. I/O Pin Leakage Current for Arria II GZ Devices

Symbol	Description	Conditions	Min	Тур	Max	Unit
I _I	Input pin	$V_I = 0 V \text{ to } V_{CCIOMAX}$	-20	—	20	μA
I _{OZ}	Tri-stated I/O pin	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$	-20	_	20	μA

Bus Hold

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–9 lists bus hold specifications for Arria II GX devices.

Table 1–9. Bus Hold Parameters for Arria II GX Devices (Note 1)

			V _{CCIO} (V)												
Parameter	Symbol	Cond.	1	.2	1	.5	1	.8	2.	.5	3	.0	3	.3	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	8	_	12	_	30	_	50	_	70	_	70	_	μA
Bus-hold high, sustaining current	I _{SUSH}	V _{IN} < V _{IL} (min.)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μA
Bus-hold low, overdrive current	I _{odl}	0 V < V _{IN} < V _{CCI0}	_	125	_	175	_	200	_	300	_	500	_	500	μA
Bus-hold high, overdrive current	I _{odh}	0 V < V _{IN} < V _{CCI0}	_	-125	_	-175	_	-200	_	-300	_	-500		-500	μA
Bus-hold trip point	V _{trip}		0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Note to Table 1-9:

(1) The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

Symbol	Description	Conditions (1/)	Calibration	11	
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCI0} = 2.5	± 30	± 30	%

Table 1–11.	OCT With and Without Calibration Specification for Arria II GX Device I/Os	(Note 1) (Part 2 of 2)

Note to Table 1–11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices	(Note 1)
--	----------

Sumhal	Description	Conditions (1)	Ca	cy	Unit	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,14	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	50- Ω internal parallel OCT with calibration	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
20-Ω , 40-Ω , and 60-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(3)</i>	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

(1) OCT calibration accuracy is valid at the time of calibration only.

(2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.

(3) 20- Ω R_{S} is not supported for 1.5 V and 1.2 V in Row I/O.

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	рF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	рF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$C_{CLK1},C_{CLK3},C_{CLK8},$ and C_{CLK10}	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2)	7	25	41	kΩ
	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2)	7	28	47	kΩ
R _{PU}	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2)	8	35	61	kΩ
npu	programmable pull-up resistor option is enabled.	V _{CCI0} = 1.8 V ±5% (2)	10	57	108	kΩ
		V _{CCI0} = 1.5 V ±5% (2)	13	82	163	kΩ
		V _{CCI0} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$	6	19	29	kΩ
		$V_{CCIO} = 3.0 \text{ V} \pm 5\%$	6	22	32	kΩ
R _{PD}	R _{PD} Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$	6	25	42	kΩ
		V _{CCI0} = 1.8 V ±5%	7	35	70	kΩ
		V _{CCI0} = 1.5 V ±5%	8	50	112	kΩ

Notes to Table 1–18:

(1) All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

(2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1-34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/			13			C4		C5 and I5				C6		Ilmit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								÷	•		•			
Supported I/O Standards			1	.2-V PCML,	1.5-V PC	CML, 2.5-V	/ PCML, Diff	erential LV	PECL, LVD	S, and HCS	L			
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V _{MAX} for a REFCLK pin	_	—	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V _{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	—	—	—	0.2			0.2		—	0.2			0.2	UI
Duty cycle	—	45	—	55	45	_	55	45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Switching (Chapter 1:
Switching Characteristics	r 1: Device Datasheet for Arria II Devices
	t for Arria
	II Devices

C5 and I5 13 C4 C6 Symbol/ Condition Unit Description Min Тур Max Min Typ Max Min Typ Max Min Typ Max PCle fixedclk clock Receiver 125 125 125 125 MHz ___ ____ ___ _ ____ ____ frequency Detect Dynamic 2.5/ 2.5/ 2.5/ 2.5/ reconfig reconfig. 37.5 37.5 50 37.5 50 37.5 50 MHz clk clock 50 ____ ____ ____ ____ clock (4) (4) (4) (4) frequency frequency Delta time between 2 2 2 2 ms ____ ____ ____ ____ ____ ____ ____ ____ reconfig clks *(5)* Transceiver block minimum 1 1 1 1 μs _ ____ ____ ____ ____ ____ power-down pulse width Receiver Supported I/O 1.4-V PCML, 1.5-V PCML, 2.5-V PCML, 2.5-V PCML, LVPECL, and LVDS Standards Data rate (13) 600 6375 3750 ____ ____ 600 3750 600 600 ____ 3125 Mbps ____ ____ Absolute V_{MAX} for a receiver pin 1.5 V 1.5 1.5 1.5 ____ ____ ____ ____ ____ ____ ____ ____ (6) Absolute V_{MIN} for -0.4 -0.4 -0.4 -0.4 V ____ ____ ____ ____ ____ ____ ____ ____ ____ a receiver pin Maximum $V_{ICM} = 0.82 V$ 2.7 2.7 2.7 2.7 V ____ ____ ____ ____ ____ ____ ____ ____ peak-to-peak setting differential input V_{ICM} =1.1 V voltage V_{ID} (diff V 1.6 1.6 1.6 1.6 ____ ____ ____ ____ ____ ____ ____ ____ setting (7) p-p)

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 3 of 7)

1-23

Symbol/	Oendition		13			C4			C5 and I	i		C6		11
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Minimum peak-to-peak differential input voltage V _{ID} (diff p-p)	_	100	_	_	100	_	_	100	_	_	100		_	mV
V _{ICM}	V _{ICM} = 0.82 V setting	_	820	_	_	820	_	_	820	_	_	820	_	mV
VICM	V _{ICM} =1.1 V setting (7)	_	1100	_	<u> </u>							_	mV	
Differential on-chip termination resistors	100–Ω setting	_	100	_	- 100 - 100 - 100 - 100 -							_	Ω	
Return loss	PCIe							50	MHz to 1.2	5 GHz: –10	dB			
differential mode	XAUI							10	0 MHz to 2	.5 GHz: –10	dB			
Return loss	PCIe							50	MHz to 1.	25 GHz: –6d	IB			
common mode	XAUI							10	0 MHz to 2	2.5 GHz: –6d	IB			
Programmable PPM detector (8)	_						62.5, 100, 1 50, 300, 500							ppm
Run length	—		80	—	_	80	—	—	80	—	—	80	—	UI
Programmable equalization	—	_	_	7	_	_	7	_	_	7	_	_	7	dB
Signal detect/loss threshold	PCIe Mode	65	_	175	65 — 175 65 — 175 65 — 175							mV		
CDR LTR time (9)	—	_	_	75	_	—	75	_	_	75	—	_	75	μs
CDR minimum T1b (10)	—	15	_	_	15	—		15	_	_	15	_	_	μs

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 4 of 7)

Chapter 1: Device Datasheet for Arria II Devices Switching Characteristics

Š	₽
vitch	apt
iing	ıpter 1
C	••
Switching Characteristics	1: Device C
eri	e
sti	ă
S	as
	he
	et -
	Datasheet for Arria II Devices
	Þ
	Ę.
	=
	ev.
	Ĉ
	õ

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/	0		13			C4		C5 and I5			C6			– Unit
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	_	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_		_	4000	_	_	4000			4000	_	_	4000	ns
	DC Gain Setting = 0	_	0		_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3		_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6		_	6	_	_	6	_	_	6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	—	600	—	6375	600		3750	600	—	3750	600	_	3125	Mbps
V _{OCM}	0.65 V setting	—	650	_	_	650	_	_	650	—	_	650		mV
Differential on-chip termination resistors	100–Ω setting		100		_	100			100		_	100		Ω
Return loss	PCIe		1	1			50 MHz to	1.25 GHz:	-10dB					
differential mode	XAUI					625 MI	312 MHz to Hz to 3.125 G			lope				
Return loss common mode	PCIe	50 MHz to 1.25 GHz: -6dB												
Rise time (2)	—	50	—	200	50		200	50	—	200	50	—	200	ps
Fall time		50		200	50	_	200	50		200	50	_	200	ps

Symbol/	Conditions	-	C3 and –I3	i (1)		-C4 and -	-14	11
Description	Conditions	Min	Тур	Мах	Min	Тур	Max	- Unit
Transceiver Clocks			•				•	
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	—	MHz
reconfig_clk clock frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μs
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCN	IL, 2.5-V PC	ML, LVPE	CL, and L\	/DS	
Data rate (16)	—	600	—	6375	600	—	3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a receiver pin	_	_	_	1.5	_	_	1.5	V
Absolute $V_{\mbox{\scriptsize MIN}}$ for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting		_	2.7	-	_	2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	_	1.6	_	_	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins <i>(8)</i>			_		165	_		mV
V	V _{ICM} = 0.82 V setting		820 ± 10	%		820 ± 109	%	mV
V _{ICM}	$V_{ICM} = 1.1 V$ setting (7)		1100 ± 10	%		1100 ± 10	1%	mV

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Pre-				V _{od} Se	etting			
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/			13			C4		C5, I5				Unit		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	nit Jitter Generation	<i>(2)</i>												
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15			0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.01	_	_	0.01	_	_	0.01	_	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.01	_	—	0.01	_		0.01	_	_	0.01	UI
SONET/SDH Receiv	ver Jitter Tolerance	(2)												
	Jitter frequency = 0.03 KHz		> 15			> 15		> 15			> 15			UI
Jitter tolerance at 622.08 Mbps	Pattern = PRBS15 Jitter frequency = 25 KHZ Pattern = PRBS15		> 1.5			> 1.5		> 1.5			> 1.5		i	UI
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15		> 0.15		> 0.15		> 0.15			UI		

Symbol/			13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	- Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>		-	-	-					<u>.</u>				
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	;		> 0.6	i		> 0.6	6	UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5</i> ,)										
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	— — 0.17			_	0.17		_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT			0.35		_	0.35	_		0.35			0.35	UI
SRIO Receiver Jitt														<u> </u>
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.3	7	> 0.37				> 0.37		
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55		> 0.55			> 0.55				> 0.55		
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5		> 8.5			> 8.5			> 8.5			UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		> 0.1				> 0.1		
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps	> 0.1				> 0.1		> 0.1				> 0.1		
	Pattern = CJPAT													<u> </u>
GIGE Transmit Jitt	er Generation <i>(6)</i>		1	1	1	T		T		1	T	r		T
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	_	_	0.14	_		0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/			13			C4		C5, I5										
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit				
OBSAI Receiver Ji	tter Tolerance (12)																	
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37			> 0.3	7		> 0.37						
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.5	5		> 0.5	5		> 0.55						
	Jitter frequency = 5.4 KHz		> 8.5			> 8.5		> 8.5			> 8.5			UI				
Sinusoidal jitter	Pattern = CJPAT																	
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1		> 0.1		> 0.1		> 0.1		> 0.1		> 0.1			> 0.1		UI
	Pattern = CJPAT																	
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i		> 8.5	i	UI				
Sinusoidal jitter	Pattern = CJPAT																	
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1		> 0.1		> 0.1		> 0.1			UI						
	Pattern = CJPAT																	

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	Conditions	13		C4		C5, I5		C6			Unit			
Description	Min Typ Max Min Typ Max Min Typ Max Min Typ Max		Max	Min	Тур	Max	UIIIL							
	Jitter frequency = 21.8 KHz		> 8.5			> 8.5			> 8.5			> 8.5		UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 3072 Mbps	Jitter frequency = 1843.2 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 10 of 10)

Notes to Table 1-40:

(1) Dedicated refelk pins are used to drive the input reference clocks. The jitter numbers are valid for the stated conditions only.

(2) The jitter numbers for SONET/SDH are compliant to the GR-253-CORE Issue 3 Specification.

(3) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.

(4) The jitter numbers for PCIe are compliant to the PCIe Base Specification 2.0.

(5) The jitter numbers for SRIO are compliant to the RapidIO Specification 1.3.

(6) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

(7) The jitter numbers for HiGig are compliant to the IEEE802.3ae-2002 Specification.

(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M Specifications.

(9) Arria II PCIe receivers are compliant to this specification provided the VTX_CM-DC-ACTIVEIDLE-DELTA of the upstream transmitter is less than 50 mV.

(10) The jitter numbers for Serial Advanced Technology Attachment (SATA) are compliant to the Serial ATA Revision 3.0 Specification.

(11) The jitter numbers for Common Public Radio Interface (CPRI) are compliant to the CPRI Specification V3.0.

(12) The jitter numbers for Open Base Station Architecture Initiative (OBSAI) are compliant to the OBSAI RP3 Specification V4.1.

Table 1–41 lists the transceiver jitter specifications for all supported protocols for Arria II GZ devices.

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 1 of 7)

Symbol/	0		–C3 and –I3			-C4 and -I4			
Description	Conditions	Min Typ Max		Min	Тур	Max	- Unit		
SONET/SDH Transmit Jitter Gener	ation <i>(3)</i>								
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15	-	_	0.1	_	_	0.1	UI	
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	—	0.01	—	_	0.01	UI	
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15	_	_	0.1	_	_	0.1	UI	
RMS jitter at 2488.32 Mbps	Pattern = PRBS15	—	—	0.01	—		0.01	UI	
SONET/SDH Receiver Jitter Tolera	ance <i>(3)</i>								
	Jitter frequency = 0.03 KHz Pattern = PRBS15		> 15			> 15		UI	
Jitter tolerance at 622.08 Mbps	Jitter frequency = 25 KHZ		> 1.5		> 1.5			UI	
	Pattern = PRBS15								
	Jitter frequency = 250 KHz Pattern = PRBS15		> 0.15	5		> 0.15		UI	

1-46

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1–42 lists the clock tree specifications for Arria II GX devices.

Table 1-42.	Clock Tree Performan	ce for Arria II GX Devices
-------------	-----------------------------	----------------------------

Clock Network		Unit		
GIUCK NELWUIK	I 3, C4	C5,I5	C6	UIII
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1–43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	rmance	Unit
GIUCK NELWUIK	–C3 and –I3	-C4 and -14	UIII
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{VC0}	PLL VCO operating Range (2)	600		1,400	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INCCJ} <i>(3)</i> ,	Input clock cycle-to-cycle jitter (Frequency \geq 100 MHz)	—	—	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency \leq 100 MHz)	—	—	±750	ps (p–p)

Table 1–44. PLL Specifications for Arria II GX Devices (Part 3 of 3)

Symbol	Description	Min	Тур	Max	Unit
t _{casc_} outjitter_	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \geq 100 MHz)	_	_	425	ps (p-p)
PERIOD_ DEDCLK (6), (7)	Period Jitter for dedicated clock output in cascaded PLLs (FOUT \leq 100 MHz)	_	_	42.5	mUI (p-p)

Notes to Table 1-44:

- (1) f_{IN} is limited by the I/O f_{MAX} .
- (2) The VCO frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the VCO post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.
- (3) A high-input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean-clock source, which is less than 200 ps.
- (4) F_{REF} is fIN/N when N = 1.
- (5) This specification is limited by the lower of the two: I/O f_{MAX} or f_{OUT} of the PLL.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied. The external memory interface clock output jitter specifications use a different measurement method and are available in Table 1–62 on page 1–70.
- (7) The cascaded PLL specification is only applicable with the following condition: a. Upstream PLL: 0.59 Mhz \leq Upstream PLL BW < 1 MHz
 - b. Downstream PLL: Downstream PLL BW > 2 MHz

Table 1–45 lists the PLL specifications for Arria II GZ devices when operating in both the commercial junction temperature range (0° to 85° C) and the industrial junction temperature range (-40° to 100° C).

Symbol	Parameter	Min	Тур	Max	Unit
f	Input clock frequency (-3 speed grade)	5		717 <i>(1)</i>	MHz
f _{IN}	Input clock frequency (-4 speed grade)	5		717 <i>(1)</i>	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f	PLL VCO operating range (-3 speed grade)	600	_	1,300	MHz
f _{VCO}	PLL VCO operating range (-4 speed grade)	600		1,300	MHz
t _{einduty}	Input clock or external feedback clock input duty cycle	40	—	60	%
f	Output frequency for internal global or regional clock (-3 speed grade)	_	_	700 (2)	MHz
f _{out}	Output frequency for internal global or regional clock (-4 speed grade)	_	_	500 <i>(2)</i>	MHz
f	Output frequency for external clock output (-3 speed grade)	_	—	717 <i>(2)</i>	MHz
f _{out_ext}	Output frequency for external clock output (-4 speed grade)	_		717 <i>(2)</i>	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{FCOMP}	External feedback clock compensation time	_	_	10	ns
t _{configpll}	Time required to reconfigure scan chain	_	3.5	—	scanclk cycles
t _{CONFIGPHASE}	Time required to reconfigure phase shift	_	1	—	scanclk cycles
f _{scanclk}	scanclk frequency	—	—	100	MHz
t _{LOCK}	Time required to lock from end-of-device configuration or de-assertion of areset	_	_	1	ms

Table 1–45. PLL Specifications for Arria II GZ Devices (Part 1 of 2)

Symbol	Conditions	I	3	C4		C5,I5		C6		Unit
Symbol	Gomarcions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 (7)	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300		300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000		10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300	_	300		350	_	400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Symbol	Oradikiran	C3, I3				U		
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Мах	Unit
Clock		<u>.</u>				<u>.</u>		
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(9)</i>	Clock boost factor W = 1 to 40 <i>(3)</i>	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(10)</i>	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

Standard	Training Pattern	Number of Data Transitions in One Repetition of the Training Pattern	Number of Repetitions per 256 Data Transitions <i>(4)</i>	Maximum
SPI-4	0000000001111111111	2	128	640 data transitions
Parallel Rapid I/O	00001111	2	128	640 data transitions
Falallel haplu 1/0	10010000	4	64	640 data transitions
Miscellaneous	10101010	8	32	640 data transitions
IVIISCEIIAIIEOUS	01010101	8	32	640 data transitions

Notes to Table 1-55:

- (1) The DPA lock time is for one channel.
- (2) One data transition is defined as a 0-to-1 or 1-to-0 transition.
- (3) The DPA lock time stated in the table applies to both commercial and industrial grade.
- (4) This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.

Figure 1–5 shows the LVDS soft-CDR/DPA sinusoidal jitter tolerance specification for Arria II GZ devices at a data rate less than 1.25 Gbps and all the Arria II GX devices.

Figure 1–5. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification for All Arria II GX Devices and for Arria II GZ Devices at a Data Rate less than 1.25 Gbps

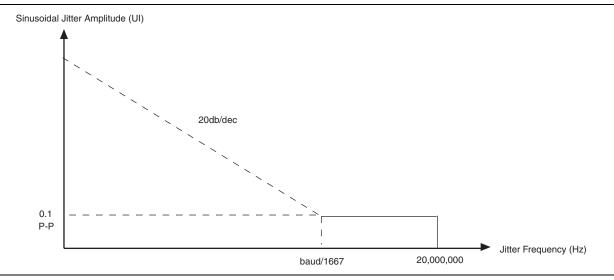


Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Parameter	Clock	Gumbal	-	-3		-4	
	Network	Symbol	Min	Max	Min	Max	Unit
Clock period jitter	Regional	$t_{JIT(per)}$	-55	55	-55	55	ps
Cycle-to-cycle period jitter	Regional	t _{JIT(cc)}	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	$t_{\text{JIT}(\text{per})}$	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-165	165	-165	165	ps
Duty cycle jitter	Global	t _{JIT(duty)}	-90	90	-90	90	ps

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	ycle Distortion	on I/O Pins	for Arria II G	X Devices	(Note 1))
	Duty O	JOID DIOLOILION			/ BO11000	11010 1/	,

Symbol	C4		13, C5, 15		C6		Ilait
	Min	Max	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	45	55	%

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Symbol	C	3, 13	C	Unit	
	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.