E·XFL

Intel - EP2AGZ300FH29C3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	11920
Number of Logic Elements/Cells	298000
Total RAM Bits	18854912
Number of I/O	281
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-HBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agz300fh29c3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
t _{RAMP}	Power Supply Ramp time	Normal POR	0.05	_	100	ms
	Fower Supply Ramp time	Fast POR	0.05	—	4	ms

Table 1-5.	Recommended	Operating	Conditions	for Arria II G	X Devices	(Note 1)	(Part 2 of 2)
------------	-------------	-----------	------------	----------------	-----------	----------	---------------

Notes to Table 1–5:

(1) For more information about supply pin connections, refer to the Arria II Device Family Pin Connection Guidelines.

(2) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(3) V_{CCPD} must be 2.5-V for I/O banks with 2.5-V and lower V_{CCIO} , 3.0-V for 3.0-V V_{CCIO} , and 3.3-V for 3.3-V V_{CCIO} .

(4) V_{CCI0} for 3C and 8C I/O banks where the configuration pins reside only supports 3.3-, 3.0-, 2.5-, or 1.8-V voltage levels.

Table 1–6 lists the recommended operating conditions for Arria II GZ devices.

Table 1–6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 1 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CC}	Core voltage and periphery circuitry power supply	_	0.87	0.90	0.93	V
V _{CCCB}	Supplies power for the configuration RAM bits	_	1.45	1.50	1.55	V
V _{CCAUX}	Auxiliary supply	_	2.375	2.5	2.625	V
VI (2)	I/O pre-driver (3.0 V) power supply	—	2.85	3.0	3.15	V
V _{CCPD} (2)	I/O pre-driver (2.5 V) power supply	_	2.375	2.5	2.625	V
	I/O buffers (3.0 V) power supply	_	2.85	3.0	3.15	V
	I/O buffers (2.5 V) power supply	—	2.375	2.5	2.625	V
V _{CCIO}	I/O buffers (1.8 V) power supply	_	1.71	1.8	1.89	V
	I/O buffers (1.5 V) power supply	_	1.425	1.5	1.575	V
	I/O buffers (1.2 V) power supply	_	1.14	1.2	1.26	V
	Configuration pins (3.0 V) power supply	_	2.85	3.0	3.15	V
V _{CCPGM}	Configuration pins (2.5 V) power supply	_	2.375	2.5	2.625	V
	Configuration pins (1.8 V) power supply	—	1.71	1.8	1.89	V
V _{CCA_PLL}	PLL analog voltage regulator power supply	_	2.375	2.5	2.625	V
V _{CCD_PLL}	PLL digital voltage regulator power supply	_	0.87	0.90	0.93	V
V _{CC_CLKIN}	Differential clock input power supply	_	2.375	2.5	2.625	V
V _{CCBAT} (1)	Battery back-up power supply (For design security volatile key register)	_	1.2	_	3.3	V
VI	DC input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	—	0	—	V _{CCIO}	V
V _{CCA_L}	Transceiver high voltage power (left side)	—	0.05/0.075	20/25(4)	2 1 5 /0 605	V
V _{CCA_R}	Transceiver high voltage power (right side)	_	2.00/2.375	3.0/2.3 (4)	3.13/2.023	v
V _{CCHIP_L}	Transceiver HIP digital power (left side)	—	0.87	0.9	0.93	V
V _{CCR_L}	Receiver power (left side)	—	1.05	1.1	1.15	V
V _{CCR_R}	Receiver power (right side)	-	1.05	1.1	1.15	V
V _{CCT_L}	Transmitter power (left side)	-	1.05	1.1	1.15	V
V _{CCT_R}	Transmitter power (right side)	-	1.05	1.1	1.15	V

Symbol	Description	Conditions (1/)	Calibration	IInit		
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit	
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%	
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCI0} = 2.5	± 30	± 30	%	

Table 1–11.	OCT With and Without Calibration S	pecification for Arria II GX Device I/Os	(Note 1) ((Part 2 of 2)

Note to Table 1–11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices (Note)	te 1)
---	-------

Symbol	Description	Conditions (1/)	Ca	CY	Ilait	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,14	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	50- Ω internal parallel OCT with calibration	V _{CCI0} = 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
20- Ω , 40- Ω , and 60- Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(3)</i>	20-Ω, 40-Ω and 60-Ω R _S expanded range for internal series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
$\begin{array}{c} 25\text{-}\Omega \; R_{S_left_shift} \\ 3.0, 2.5, 1.8, 1.5, \\ 1.2 \end{array}$	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

(1) OCT calibration accuracy is valid at the time of calibration only.

(2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.

(3) 20- Ω R_{S} is not supported for 1.5 V and 1.2 V in Row I/O.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ I
--

Cumhol	Description	Conditions (1/)	Resistance	Ilait	
Symbol	Description	Conditions (V)	C3,I3	C4,14	UIIIL
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
25-Ω R _S 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCI0} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCI0} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCI0} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} \,=\, R_{SCAL} \Big(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \Big)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO} .

Table 1–30 lists the HSTL I/O standards for Arria II GX devices.

L/O Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)		V _{CM(DC)} (V)			V _{DIF(AC)} (V)		
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2	—	0.85	—	0.95	0.88	_	0.95	0.4	—
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	—	0.71	_	0.79	0.71	_	0.79	0.4	—
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	_	_	0.5 × V _{CCIO}	_	0.48 × V _{CCI0}	0.5 × V _{CCIO}	0.52× V _{CCIO}	0.3	_

Table 1–30. Differential HSTL I/O Standards for Arria II GX Devices

Table 1–31 lists the HSTL I/O standards for Arria II GZ devices.

Table 1–31. Differential HSTL I/O Standards for Arria II GZ Devices

I/N Standard	V _{CCIO} (V)			V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)			V _{DIF(AC)} (V)	
i/U Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I	1.71	1.8	1.89	0.2		0.78	-	1.12	0.78	_	1.12	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.68	—	0.9	0.68		0.9	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCI0} + 0.3	_	0.5 × V _{CCIO}		0.4 × V _{CCIO}	0.5 × V _{CCIO}	0.6 × V _{CCIO}	0.3	V _{CCI0} + 0.48

Table 1–32 lists the differential I/O standard specifications for Arria II GX devices.

Table 1–32. Differential I/O Standard Specifications for Arria II GX Devices (Note 1)

I/O	V	_{ccio} (V)		V _{ID} (mV)		V _{ICM} (V) <i>(2)</i>	V	_{od} (V)	(3)		V _{ocm} (V))
Standard	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.80	0.247	_	0.6	1.125	1.25	1.375
RSDS (4)	2.375	2.5	2.625	_		_	_	—	0.1	0.2	0.6	0.5	1.2	1.4
Mini-LVDS (4)	2.375	2.5	2.625	_	_	_	_	_	0.25	_	0.6	1	1.2	1.4
LVPECL (5)	2.375	2.5	2.625	300	_		0.6	1.8	_	_	_	-	_	_
BLVDS (6)	2.375	2.5	2.625	100				—			_	—		

Notes to Table 1-32:

(1) The 1.5 V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.

(2) V_{IN} range: 0 <= V_{IN} <= 1.85 V.

(3) R_L range: 90 <= RL <= 110 Ω .

- (4) The RSDS and mini-LVDS I/O standards are only supported for differential outputs.
- (5) The LVPECL input standard is supported at the dedicated clock input pins (GCLK) only.
- (6) There are no fixed V_{ICM} , V_{OD} , and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Switching	Chapter 1:
Characteri	: Device [
stics)atasheet
	for
	Arria
	=
	Device

Table 1–34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 5 of 7)

Symbol/	Oandition	Condition			13 C4				C5 and I	5	C6			1114
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
LTD lock time (11)	—	0	100	4000	0	100	4000	0	100	4000	0	100	4000	ns
Data lock time from rx_ freqlocked (12)	_	_	_	4000	_	_	4000	_	_	4000	_	_	4000	ns
	DC Gain Setting = 0	_	0	_	_	0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_		3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_		6	_	dB
Transmitter														
Supported I/O Standards							1.5-V PCM	L						
Data rate	—	600		6375	600	—	3750	600		3750	600	—	3125	Mbps
V _{OCM}	0.65 V setting	_	650	_	_	650	_	_	650	_	_	650	_	mV
Differential on-chip termination resistors	100–Ω setting	_	100	_	_	100	_	_	100	_	_	100	_	Ω
Paturn loss	PCIe		50 MHz to 1.25 GHz: –10dB											
differential mode	XAUI		312 MHz to 625 MHz: –10dB 625 MHz to 3.125 GHz: –10dB/decade slope											
Return loss common mode	PCIe						50 MHz to	1.25 GHz:	–6dB					
Rise time (2)		50		200	50		200	50		200	50		200	ps
Fall time		50	_	200	50		200	50	_	200	50		200	ps

Symbol/	0	-C3 and -I3 <i>(1)</i> -C4 and -I4		-14	Unit			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transceiver Clocks								
Calibration block clock frequency (cal_blk_clk)	_	10	_	125	10	_	125	MHz
fixedclk clock frequency	PCIe Receiver Detect	_	125	_	_	125	_	MHz
reconfig_clk ClOCk frequency	Dynamic reconfiguration clock frequency	2.5/ 37.5 <i>(4)</i>	_	50	2.5/ 37.5 <i>(4)</i>	_	50	MHz
Delta time between reconfig_clks (5)	_	_	_	2	_	_	2	ms
Transceiver block minimum power-down (gxb_powerdown) pulse width	_	1	_	_	1	_	_	μs
Receiver								
Supported I/O Standards	1.4-	V PCML,	1.5-V PCM	IL, 2.5-V PC	ML, LVPE	CL, and L\	/DS	
Data rate (16)	—	600	_	6375	600	—	3750	Mbps
Absolute V_{MAX} for a receiver pin (6)	—	_	—	1.6	_	—	1.6	V
Operational V _{MAX} for a receiver pin	_	_	—	1.5	_	—	1.5	V
Absolute V _{MIN} for a receiver pin	_	-0.4	_	_	-0.4	_	_	V
Maximum peak-to-peak differential input voltage V _{ID} (diff p-p) before device configuration	_	_	_	1.6	_	_	1.6	V
Maximum peak-to-peak differential input voltage V _{ID}	V _{ICM} = 0.82 V setting	_		2.7	_		2.7	V
(diff p-p) after device configuration	V _{ICM} =1.1 V setting (7)	_	—	1.6	_	—	1.6	V
Minimum differential eye opening at receiver serial	Data Rate = 600 Mbps to 5 Gbps Equalization = 0 DC gain = 0 dB	100	_	_	165	_	_	mV
input pins <i>(8)</i>	Data Rate > 5 Gbps Equalization = 0 DC gain = 0 dB	165	_	_	165	_	_	mV
Var	V _{ICM} = 0.82 V setting		820 ± 10 ⁰	%		820 ± 10 ⁰	%	mV
I VICM	$V_{ICM} = \overline{1.1 \text{ V} \text{ setting}}$		1100 ± 10	%		1100 ± 10	%	mV

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 2 of 5)

Symbol/		-	C3 and –I3	3 (1)		-C4 and -	-14	– Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Transmitter								
Supported I/O Standards				1.5-V PCML				
Data rate (14)	—	600		6375	600	_	3750	Mbps
V _{OCM}	0.65 V setting		650	—		650	—	mV
	85– Ω setting		85 ± 15%	6		85 ± 15%	6	Ω
Differential on-chip	100– Ω setting		100 ± 15	%		100 ± 150	%	Ω
termination resistors	120– Ω setting		120 ± 15	%		120 ± 150	%	Ω
	150-Ω setting		150 ± 15	%		150 ± 159	%	Ω
Differential and common mode return loss	$\begin{array}{c} \mbox{PCle Gen1 and} \\ \mbox{Gen2 (TX V_{0D}=4),} \\ \mbox{XAUI (TX V_{0D}=6),} \\ \mbox{HiGig} + \\ \mbox{(TX } V_{0D}$ =6),} \\ \mbox{CEI SR/LR} \\ \mbox{(TX } V_{0D}=8),} \\ \mbox{SRIO SR } (V_{0D}=8),} \\ \mbox{SRIO LR } (V_{0D}=8),} \\ \mbox{CPRI LV } (V_{0D}=6),} \\ \mbox{CPRI HV } (V_{0D}=6),} \\ \mbox{SATA } (V_{0D}=4),} \end{array}			Comp	liant			
Rise time (15)	—	50		200	50	_	200	ps
Fall time (15)	—	50	—	200	50	—	200	ps
Intra-differential pair skew	—	—	—	15	—	—	15	ps
Intra-transceiver block transmitter channel-to-channel skew	×4 PMA and PCS bonded mode Example: XAUI, PCle ×4, Basic ×4	_	_	120	_	_	120	ps
Inter-transceiver block transmitter channel-to-channel skew	×8 PMA and PCS bonded mode Example: PCIe ×8, Basic ×8	_	_	500	_	_	500	ps
CMU0 PLL and CMU1 PLL								
Supported Data Range		600		6375	600	_	3750	Mbps
<pre>pll_powerdown minimum pulse width (tpll_powerdown)</pre>	_		1			1		μS
CMU PLL lock time from pll_powerdown de-assertion	_		_	100	_	_	100	μS

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 4 of 5)

Symbol/	Conditions —	-1	C3 and –I3	(1)		-14	Unit				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit			
	PCIe Gen1		•	2.5 -	3.5			MHz			
	PCIe Gen2			6 -	8			MHz			
	(OIF) CEI PHY at 4.976 Gbps		7 - 11								
-3 dB Bandwidth	(OIF) CEI PHY at 6.375 Gbps		5 - 10								
	XAUI			2 -	4			MHz			
	SRIO 1.25 Gbps	3 - 5.5									
	SRIO 2.5 Gbps		3 - 5.5								
	SRIO 3.125 Gbps			2 -	4			MHz			
	GIGE			2.5 -	4.5			MHz			
	SONET 0C12			1.5 -	2.5			MHz			
	SONET 0C48			3.5	- 6			MHz			
Transceiver-FPGA Fabric Int	erface										
Interface speed	—	25		325	25		250	MHz			
Digital reset pulse width	—		Minim	um is two pa	rallel cloo	k cycles					

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Notes to Table 1-35:

(1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ225, EP2AGZ300, and EP2AGZ350.

- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–1 shows the lock time parameters in manual mode.

LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–2 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Automatic Mode

Table 1–37 lists the typical V_{OD} for TX term that equals 100 Ω $\,$ for Arria II GX and GZ devices.

Quartus II Setting	V _{oD} Setting (mV)
1	400
2	600
3 (Arria II GZ)	700
4	800
5	900
6	1000
7	1200

Table 1–37. Typical V_{OD} Setting, TX Termination = 100 Ω for Arria II Devices

Table 1–38 lists the typical transmitter pre-emphasis levels in dB for the first post tap under the following conditions: low-frequency data pattern (five 1s and five 0s) at 6.375 Gbps. The levels listed in Table 1–38 are a representation of possible pre-emphasis levels under these specified conditions only, the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II GX HSSI HSPICE models.

Arria II GX		Arria II GX (Quartus II Software) VOD Setting											
(Quartus II Software) First Post Tap Setting	1	2	4	5	6	7	Unit						
0 (off)	0	0	0	0	0	0	—						
1	0.7	0	0	0	0	0	dB						
2	2.7	1.2	0.3	0	0	0	dB						
3	4.9	2.4	1.2	0.8	0.5	0.2	dB						
4	7.5	3.8	2.1	1.6	1.2	0.6	dB						
5	_	5.3	3.1	2.4	1.8	1.1	dB						
6		7	4.3	3.3	2.7	1.7	dB						

Table 1–38. Transmitter Pre-Emphasis Levels for Arria II GX Devices

Symbol/			13			C4		C5, I5		C6				
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>	•												
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6	6		> 0.6	;		> 0.6	;	UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65		175	65		175	65		175	65		175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5</i> ,)										
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = C IPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT			0.35		_	0.35		_	0.35	_		0.35	UI
SRIO Receiver Jitt	er Tolerance <i>(5)</i>								•					
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37			> 0.3	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55			> 0.5	5		> 0.5	5		> 0.5	5	UI
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps		> 8.5			> 8.5	5		> 8.5	i		> 8.5	;	UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1			> 0.1			> 0.1		UI
GIGE Transmit Jitt	er Generation <i>(6)</i>													
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14		_	0.14	_	_	0.14	_	_	0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/			-C3 and	-13	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter Frequency = 38.2 KHz			I				
	Data rate = 6.375 Gbps		> 0.5			—	_	UI
	Pattern = PRBS31 BER = 10 ⁻¹²							
	Jitter Frequency = 3.82 MHz							
Sinusoidal jitter tolerance (peak-	Data rate = 6.375 Gbps		> 0.05	i		—		UI
	Pattern = PRBS31 BER = 10 ⁻¹²							
	Jitter Frequency = 20 MHz							
	Data rate = 6.375 Gbps		> 0.05	i		—		UI
	Pattern = PRBS31 BER = 10 ⁻¹²	PRBS31 BER = 10 ⁻¹²						
SDI Transmitter Jitter Generation	n <i>(12)</i>							
	Data rate = 1.485 Gbps (HD)							
Alignment jitter	Pattern = color bar Low-frequency roll-off = 100 KHz	0.2 — — 0.2 — —				UI		
(peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern							
	= color bar Low-frequency roll-off = 100 KHz	0.3	_	_	0.3	_	—	UI
SDI Receiver Jitter Tolerance (1	2)							
	Jitter frequency = 15 KHz							
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 2			> 2		UI	
Cinuacidal littar talaranga (naal	Jitter frequency = 100 KHz							
to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		UI
	Jitter frequency = 148.5 MHz							
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		UI
	Jitter frequency = 20 KHz							
	Data rate = 1.485 Gbps (HD) pattern = 75% color bar		>1			>1		UI
Cinuacidal littar talaranga (naal	Jitter frequency = 100 KHz							
to-peak)	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2		UI
	Jitter frequency = 148.5 MHz							
	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2		UI
SAS Transmit Jitter Generation	(13)		-			-		
Total jitter at 1.5 Gbps (G1)	Pattern = CJPAT	—		0.55			0.55	UI
Deterministic jitter at 1.5 Gbps (G1)	Pattern = CJPAT	—	—	0.35	_	—	0.35	UI
Total jitter at 3.0 Gbps (G2)	Pattern = CJPAT	_	_	0.55		_	0.55	UI

Table 1–41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 5 of 7)

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1–42 lists the clock tree specifications for Arria II GX devices.

Table 1-42.	Clock Tree	Performance	for Arria	II GX Devices
-------------	-------------------	-------------	-----------	----------------------

Clock Notwork		Ilnit		
GIUCK NELWURK	13, C4	C5,I5	C6	UIIIL
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1–43. Clock Tree Performance for Arria II GZ Devices

Glock Notwork	Performance					
GIUGK NELWUIK	-C3 and -I3 -C4 and -I4		Unit			
GCLK and RCLK	700	500	MHz			
PCLK	500	450	MHz			

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{VCO}	PLL VCO operating Range (2)	600	—	1,400	MHz
f _{INDUTY}	Input clock duty cycle	40	—	60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INCCJ} (3),	Input clock cycle-to-cycle jitter (Frequency \ge 100 MHz)	_		0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency \leq 100 MHz)	_		±750	ps (p-p)

DSP Block Specifications

Table 1–46 lists the DSP block performance specifications for Arria II GX devices.

Table 1-46.	DSP	Block Performance	Specifications for	[·] Arria II	GX Devices	(Note 1))
-------------	-----	-------------------	---------------------------	-----------------------	------------	----------	---

Mada	Resources Used		11 -14			
wode	Number of Multipliers	C4	13	C5,I5	C6	Unit
9 × 9-bit multiplier	1	380	310	300	250	MHz
12 × 12-bit multiplier	1	380	310	300	250	MHz
18 × 18-bit multiplier	1	380	310	300	250	MHz
36 × 36-bit multiplier	1	350	270	270	220	MHz
18 × 36-bit high-precision multiplier adder mode	1	350	270	270	220	MHz
18 × 18-bit multiply accumulator	4	380	310	300	250	MHz
18 × 18-bit multiply adder	4	380	310	300	250	MHz
18 × 18-bit multiply adder-signed full precision	2	380	310	300	250	MHz
18 × 18-bit multiply adder with loopback <i>(2)</i>	2	275	220	220	180	MHz
36-bit shift (32-bit data)	1	350	270	270	220	MHz
Double mode	1	350	270	270	220	MHz

Notes to Table 1-46:

(1) Maximum is for a fully-pipelined block with **Round** and **Saturation** disabled.

(2) Maximum is for loopback input registers disabled, **Round** and **Saturation** disabled, pipeline and output registers enabled.

Table 1–47 lists the DSP block performance specifications for Arria II GZ devices.

Table 1-47. DSP Bloc	ck Performance Specificati	ons for Arria II GZ Devices	(Note 1)	(Part 1 of 2)
----------------------	----------------------------	-----------------------------	----------	---------------

Mada	Resources Used	Perfor	nance	lln:t
Moue	Number of Multipliers	-3	-4	UIIIL
9 × 9-bit multiplier	1	460	400	MHz
12 × 12-bit multiplier	1	500	440	MHz
18 × 18-bit multiplier	1	550	480	MHz
36 × 36-bit multiplier	1	440	380	MHz
18 × 18-bit multiply accumulator	4	440	380	MHz
18 × 18-bit multiply adder	4	470	410	MHz
18 × 18-bit multiply adder-signed full precision	2	450	390	MHz
18 × 18-bit multiply adder with loopback (2)	2	350	310	MHz
36-bit shift (32-bit data)	1	440	380	MHz

Cumbol	Conditiono	13		C4		C5,I5		C6		Unit	
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
f _{HSDR} (data rate)	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 <i>(7)</i>	(3)	640 <i>(7)</i>	Mbps	
	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps	
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps	
Soft-CDR PPM tolerance	Soft-CDR mode	_	300	_	300	_	300	_	300	±PPM	
DPA run length	DPA mode	_	10,000	_	10,000	_	10,000	_	10,000	UI	
Sampling window (SW)	Non-DPA mode (5)		300		300		350		400	ps	

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices	; (Note 1),	(2),	(10)	(Part 1 🛛	of 3)
---	-------------	------	------	-----------	-------

Symbol	Ocaditions	C3, I3			C4, I4			Unit
Symbol	Conarcions	Min	Тур	Max	Min	Тур	Max	Unit
Clock								
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5		717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (9)	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards (10)	Clock boost factor W = 1 to 40 <i>(3)</i>	5	_	420	5		420	MHz

Cumhal	Conditiono	C3, I3				Unit		
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 <i>(7)</i>	5	_	717 <i>(7)</i>	MHz
Transmitter								
f _{HSDR} (true LVDS output data rate)	SERDES factor, J = 3 to 10 (using dedicated SERDES) (8)	(4)	_	1250	(4)	_	1250	Mbps
	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) <i>(5)</i>	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _{x Jitter}	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160		_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1			0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300		_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2		_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
tduty	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

Table 1-60 lists the DQS phase shift error for Arria II GX devices.

Number of DQS Delay Buffer	C4	13, C5, 15	C6	Unit
1	26	30	36	ps
2	52	60	72	ps
3	78	90	108	ps
4	104	120	144	ps

Table 1–60. DQS Phase Shift Error Specification for DLL-Delayed Clock (t_{DQS_PSERR}) for Arria II GX Devices (*Note 1*)

Note to Table 1-60:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a C4 speed grade is ± 78 ps or ± 39 ps.

Table 1–61 lists the DQS phase shift error for Arria II GZ devices.

Table 1–61.	DQS Phase	Shift Error S	Specification	for DLL-Delaye	d Clock (t _{dos}	PSERR) for A	rria II GZ
Devices <i>(No</i>	ote 1)						

Number of DQS Delay Buffer	-3	-4	Unit
1	28	30	ps
2	56	60	ps
3	84	90	ps
4	112	120	ps

Note to Table 1-61:

(1) This error specification is the absolute maximum and minimum error. For example, skew on three DQS delay buffers in a 3 speed grade is ± 84 ps or ± 42 ps.

Table 1–62 lists the memory output clock jitter specifications for Arria II GX devices.

 Table 1–62. Memory Output Clock Jitter Specification for Arria II GX Devices (Note 1), (2), (3)

Paramatar	Clock Network	Symbol	-4		-5		-6		Unit
rarameter			Min	Max	Min	Max	Min	Max	UIIIL
Clock period jitter	Global	$t_{JIT(per)}$	-100	100	-125	125	-125	125	ps
Cycle-to-cycle period jitter	Global	t _{JIT(cc)}	-200	200	-250	250	-250	250	ps
Duty cycle jitter	Global	$t_{JIT(duty)}$	-100	100	-125	125	-125	125	ps

Notes to Table 1-62:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.

(3) The memory output clock jitter stated in Table 1–62 is applicable when an input jitter of 30 ps is applied.

Table 1–63 lists the memory output clock jitter specifications for Arria II GZ devices.

Doromotor	Clock	Symbol	-3		-4		Unit
rarameter	Network	Symbol	Min	Max	Min	Max	UIII
Clock period jitter	Regional	t _{JIT(per)}	-55	55	-55	55	ps
Cycle-to-cycle period jitter	Regional	$t_{\text{JIT(cc)}}$	-110	110	-110	110	ps
Duty cycle jitter	Regional	t _{JIT(duty)}	-82.5	82.5	-82.5	82.5	ps
Clock period jitter	Global	t _{JIT(per)}	-82.5	82.5	-82.5	82.5	ps
Cycle-to-cycle period jitter	Global	$t_{JIT(cc)}$	-165	165	-165	165	ps
Duty cycle jitter	Global	$t_{JIT(duty)}$	-90	90	-90	90	ps

Table 1-63. Memory Output Clock Jitter Specification for Arria II GZ Devices (Note 1), (2), (3)

Notes to Table 1-63:

(1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2/DDR3 SDRAM standard.

(2) The clock jitter specification applies to memory output clock pins generated using differential signal-splitter and DDIO circuits clocked by a PLL output routed on a regional or global clock network as specified. Altera recommends using regional clock networks whenever possible.

(3) The memory output clock jitter stated in Table 1-63 is applicable when an input jitter of 30 ps is applied.

Duty Cycle Distortion (DCD) Specifications

Table 1-64 lists the worst-case DCD specifications for Arria II GX devices.

Table 1-64.	Duty C	vcle Distortion	n on I/O	Pins for	Arria II	GX Devices	(Note 1	
		,						

Symbol	C4		13, C5, 15		C6		Ilmit	
Symbol	Min	Max	Min	Max	Min	Max	UIIIL	
Output Duty Cycle	45	55	45	55	45	55	%	

Note to Table 1-64:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

Table 1–65 lists the worst-case DCD specifications for Arria II GZ devices.

 Table 1–65. Duty Cycle Distortion on I/O Pins for Arria II GZ Devices (Note 1)

Symbol	C	3, 13	C	lla:t	
Symbol	Min	Max	Min	Max	Unit
Output Duty Cycle	45	55	45	55	%

Note to Table 1-65:

(1) The DCD specification applies to clock outputs from the PLL, global clock tree, IOE driving dedicated, and general purpose I/O pins.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions					
		Receiver Input Waveforms Single-Ended Waveform V_{ID} Positive Channel (p) = V_{IH} Negative Channel (n) = V_{IL} Ground					
A, B, C, D	Differential I/O Standards	Differential Waveform v_{ID} $p - n = 0 V$ Transmitter Output Waveforms					
		Single-Ended Waveform Positive Channel (p) = V_{OH} Negative Channel (n) = V_{OL} Ground Differential Waveform p - n = 0 V					
	f _{HSCLK}	Left/Right PLL input clock frequency.					
E,	f _{HSDR}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.					
F	f _{hsdrdpa}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.					