

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	11920
Number of Logic Elements/Cells	298000
Total RAM Bits	18854912
Number of I/O	281
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BBGA, FCBGA
Supplier Device Package	780-HBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agz300fh29c4n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Conditions beyond those listed in Table 1–1 and Table 1–2 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 1–1 lists the absolute maximum ratings for Arria II GX devices.

Table 1-1. Absolute Maximum Ratings for Arria II GX Devices

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCI Express® (PIPE) (PCIe) HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Supplies power for the configuration RAM bits	-0.5	1.8	V
V _{CCBAT}	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V_{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
V _I	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA
V _{CCA}	Supplies power to the transceiver PMA regulator	_	3.75	V
V_{CCL_GXB}	Supplies power to the transceiver PMA TX, PMA RX, and clocking	_	1.21	V
$V_{\text{CCH_GXB}}$	Supplies power to the transceiver PMA output (TX) buffer	_	1.8	V
T _J	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2 lists the absolute maximum ratings for Arria II GZ devices.

Table 1-2. Absolute Maximum Ratings for Arria II GZ Devices (Part 1 of 2)

Symbol	Description	Minimum	Maximum	Unit
V _{CC}	Supplies power to the core, periphery, I/O registers, PCIe HIP block, and transceiver PCS	-0.5	1.35	V
V _{CCCB}	Power supply to the configuration RAM bits	-0.5	1.8	V
V _{CCPGM}	Supplies power to the configuration pins	-0.5	3.75	V
V _{CCAUX}	Auxiliary supply	-0.5	3.75	V
V _{CCBAT}	Supplies battery back-up power for design security volatile key register	-0.5	3.75	V
V _{CCPD}	Supplies power to the I/O pre-drivers, differential input buffers, and MSEL circuitry	-0.5	3.75	V
V _{CCIO}	Supplies power to the I/O banks	-0.5	3.9	V
V _{CC_CLKIN}	Supplies power to the differential clock input	-0.5	3.75	V
V _{CCD_PLL}	Supplies power to the digital portions of the PLL	-0.5	1.35	V
V _{CCA_PLL}	Supplies power to the analog portions of the PLL and device-wide power management circuitry	-0.5	3.75	V
VI	DC input voltage	-0.5	4.0	V
I _{OUT}	DC output current, per pin	-25	40	mA

Table 1-6. Recommended Operating Conditions for Arria II GZ Devices (Note 6) (Part 2 of 2)

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1.4/1.5 (5)	1.575	V
V _{CCH_GXBRn}	Transmitter output buffer power (right side)	_	1.55/1.425	1.4/1.5 (5)	1.373	V
т	Operating junction temperature	Commercial	0	_	85	°C
T _J	Operating junction temperature	Industrial	-40	_	100	°C
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	_	100	ms
t _{RAMP}	Trower supply famp time	Fast POR (PORSEL=1)	0.05	_	4	ms

Notes to Table 1-6:

- (1) Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.
- (2) V_{CCPD} must be 2.5 V when V_{CCIO} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCIO} is 3.0 V.
- (3) n = 0, 1, or 2.
- (4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.
- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter.

Table 1–11. OCT With and Without Calibration Specification for Arria II GX Device I/Os (Note 1) (Part 2 of 2)

Symbol	Description	Conditions (II)	Calibration	II.m.i.k	
	Description	Conditions (V)	Commercial	Industrial	Unit
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCIO} = 2.5	± 30	± 30	%

Note to Table 1-11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices (Note 1)

		6 1111 (115	Ca	cy		
Symbol	Description	Conditions (V)	C2	C3,I3	C4,I4	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	$50-\Omega$ internal parallel OCT with calibration	$V_{CCIO} = 2.5, 1.8, 1.5, 1.2$	± 10	± 10	± 10	%
20- Ω , 40- Ω , and 60- Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 (3)	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

- (1) OCT calibration accuracy is valid at the time of calibration only.
- (2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.
- (3) $20-\Omega$ R_S is not supported for 1.5 V and 1.2 V in Row I/O.

The calibration accuracy for calibrated series and parallel OCTs are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

Table 1–13 lists the Arria II GZ OCT without calibration resistance tolerance to PVT changes.

Table 1–13. OCT Without Calibration Resistance Tolerance Specifications for Arria II GZ Devices

0	Paradotta:	0	Resistance	Tolerance	1114
Symbol	Description	Conditions (V)	C3,I3	C4,I4	Unit
25-Ω R _S 3.0 and 2.5	25-Ω internal series OCT without calibration	$V_{CCIO} = 3.0, 2.5$	± 40	± 40	%
25-Ω R _S 1.8 and 1.5	25-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
25-Ω R _S 1.2	25-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
50-Ω R _S 3.0 and 2.5	50-Ω internal series OCT without calibration	V _{CCIO} = 3.0, 2.5	± 40	± 40	%
50-Ω R _S 1.8 and 1.5	50-Ω internal series OCT without calibration	V _{CCIO} = 1.8, 1.5	± 40	± 40	%
50-Ω R _S 1.2	50-Ω internal series OCT without calibration	V _{CCIO} = 1.2	± 50	± 50	%
100-Ω R _D 2.5	100-Ω internal differential OCT	V _{CCIO} = 2.5	± 25	± 25	%

OCT calibration is automatically performed at power up for OCT-enabled I/Os. When voltage and temperature conditions change after calibration, the resistance may change. Use Equation 1–1 and Table 1–14 to determine the OCT variation when voltage and temperature vary after power-up calibration for Arria II GX and GZ devices.

Equation 1–1. OCT Variation (Note 1)

$$R_{OCT} = R_{SCAL} \bigg(1 + \langle \frac{dR}{dT} \times \Delta T \rangle \pm \langle \frac{dR}{dV} \times \Delta V \rangle \bigg)$$

Notes to Equation 1–1:

(1) R_{OCT} value calculated from Equation 1–1shows the range of OCT resistance with the variation of temperature and V_{CCIO}.

Table 1–17 lists the pin capacitance for Arria II GZ devices.

Table 1–17. Pin Capacitance for Arria II GZ Devices

Symbol	Description	Typical	Unit
C _{IOTB}	Input capacitance on the top and bottom I/O pins	4	pF
C _{IOLR}	Input capacitance on the left and right I/O pins	4	pF
C _{CLKTB}	Input capacitance on the top and bottom non-dedicated clock input pins	4	pF
C _{CLKLR}	Input capacitance on the left and right non-dedicated clock input pins	4	pF
C _{OUTFB}	Input capacitance on the dual-purpose clock output and feedback pins	5	pF
$\begin{array}{c} C_{\text{CLK1}},C_{\text{CLK3}},C_{\text{CLK8}},\\ \text{and}C_{\text{CLK10}} \end{array}$	Input capacitance for dedicated clock input pins	2	pF

Internal Weak Pull-Up and Weak Pull-Down Resistors

Table 1–18 lists the weak pull-up and pull-down resistor values for Arria II GX devices.

Table 1–18. Internal Weak Pull-up and Weak Pull-Down Resistors for Arria II GX Devices (Note 1)

Symbol	Description	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$ (2)	7	25	41	kΩ
R _{PU}	Value of I/O pin pull-up resistor	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$ (2)	7	28	47	kΩ
	before and during configuration, as well as user mode if the	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$ (2)	8	35	61	kΩ
	programmable pull-up resistor	$V_{CCIO} = 1.8 \text{ V } \pm 5\% $ (2)	10	57	108	kΩ
	option is enabled.	$V_{CCIO} = 1.5 \text{ V } \pm 5\% $ (2)	13	82	163	kΩ
		V _{CCIO} = 1.2 V ±5% (2)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V } \pm 5\%$	6	19	29	kΩ
	Value of TOV also still datum	$V_{CCIO} = 3.0 \text{ V } \pm 5\%$	6	22	32	kΩ
R _{PD}	Value of TCK pin pull-down resistor	$V_{CCIO} = 2.5 \text{ V } \pm 5\%$	6	25	42	kΩ
		$V_{CCIO} = 1.8 \text{ V } \pm 5\%$	7	35	70	kΩ
		$V_{CCIO} = 1.5 \text{ V } \pm 5\%$	8	50	112	kΩ

Notes to Table 1-18:

⁽¹⁾ All I/O pins have an option to enable weak pull-up except configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.

⁽²⁾ Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO}.

Table 1–33 lists the differential I/O standard specifications for Arria II GZ devices.

Table 1–33. Differential I/O Standard Specifications for Arria II GZ Devices (Note 1)

I/O	V _{CCIO} (V)		V _{ID} (mV)		V _{ICM(DC)} (V)		V _{OD} (V) <i>(3)</i>		V _{OCM} (V) <i>(3)</i>		3)			
Standard (2)	Min	Тур	Max	Min	Cond.	Max	Min	Max	Min	Тур	Max	Min	Тур	Max
2.5 V LVDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1.125	1.25	1.375
2.5 V LVDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.05	1.8	0.247	_	0.6	1	1.25	1.5
RSDS (HIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.4
RSDS (VIO)	2.375	2.5	2.625	100	V _{CM} = 1.25 V	_	0.3	1.4	0.1	0.2	0.6	0.5	1.2	1.5
Mini-LVDS (HIO)	2.375	2.5	2.625	200	l	600	0.4	1.32 5	0.25		0.6	1	1.2	1.4
Mini-LVDS (VIO)	2.375	2.5	2.625	200		600	0.4	1.32 5	0.25		0.6	1	1.2	1.5
LVPECL	2.375	2.5	2.625	300			0.6	1.8			_	_		_
BLVDS (4)	2.375	2.5	2.625	100		_	_	_	_	_	_	_	_	_

Notes to Table 1-33:

- (1) 1.4-V/1.5-V PCML transceiver I/O standard specifications are described in "Transceiver Performance Specifications" on page 1–21.
- (2) Vertical I/O (VIO) is top and bottom I/Os; horizontal I/O (HIO) is left and right I/Os.
- (3) R_1 range: $90 \le RL \le 110 \Omega$.
- (4) There are no fixed V_{ICM}, V_{OD}, and V_{OCM} specifications for BLVDS. These specifications depend on the system topology.

Power Consumption for the Arria II Device Family

Altera offers two ways to estimate power for a design:

- Using the Microsoft Excel-based Early Power Estimator
- Using the Quartus[®] II PowerPlay Power Analyzer feature

The interactive Microsoft Excel-based Early Power Estimator is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II PowerPlay Power Analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, when combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 3 of 5)

Symbol/		_	C3 and –I3	3 (1)		11!4		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Receiver DC Coupling Support	_	"DC-Cou	For more information about receiver DC coupling support, refe "DC-Coupled Links" section in the <i>Transceiver Architecture for Devices</i> chapter.					
	85– Ω setting		85 ± 20%	6		85 ± 20%	6	Ω
Differential on-chip	100–Ω setting		100 ± 20	%		100 ± 20°	%	Ω
termination resistors	120–Ω setting		120 ± 20	%		120 ± 20°	%	Ω
	150-Ω setting		150 ± 20	%		150 ± 20°	%	Ω
Differential and common mode return loss	PCIe (Gen 1 and Gen 2), XAUI, HiGig+, CEI SR/LR, SRIO SR/LR, CPRI LV/HV, OBSAI, SATA	Compliant					_	
Programmable PPM detector (9)	_		± 62.5, 10	0, 125, 200,	, 250, 300	, 500, 1,00	00	ppm
Run length	_	_	_	200	_	_	200	UI
Programmable equalization	_	_	_	16	_	_	16	dB
t _{LTR} (10)	_	_	_	75	_	_	75	μs
t _{LTR_LTD_Manual} (11)	_	15	_	_	15	_	_	μs
t _{LTD_Manual} (12)	_	_	_	4000	_	_	4000	ns
t _{LTD_Auto} (13)	_	_	_	4000	_	_	4000	ns
	PCIe Gen1			2.0 -	- 3.5			MHz
	PCIe Gen2	40 - 65						MHz
	(OIF) CEI PHY at 6.375 Gbps			20 -	- 35			MHz
Receiver CDR	XAUI			10 -	- 18			MHz
3 dB Bandwidth in	SRIO 1.25 Gbps			10 -	- 18			MHz
lock-to-data (LTD) mode	SRIO 2.5 Gbps			10 -	- 18			MHz
	SRIO 3.125 Gbps			6 -	10			MHz
	GIGE			6 -	10			MHz
	SONET OC12			3 -	- 6			MHz
	SONET OC48			14 -	- 19			MHz
Receiver buffer and CDR offset cancellation time (per channel)	_	_	_	17000	_	_	17000	reconfig_clk
	DC Gain Setting = 0		0	_	_	0	—	dB
Programmable DC gain	DC Gain Setting = 1		3			3		dB
	DC Gain Setting = 2	_	6	_	_	6	_	dB

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Symbol/	O a malistica ma	-(C3 and –I3	(1)	-C4 and -I4			Unit	
Description	Conditions	Min	Тур	Max	Min	Тур	Max		
	PCIe Gen1	2.5 - 3.5							
	PCIe Gen2	6 - 8							
	(OIF) CEI PHY at 4.976 Gbps	7 - 11							
-3 dB Bandwidth	(OIF) CEI PHY at 6.375 Gbps	5 - 10							
	XAUI	2 - 4							
	SRIO 1.25 Gbps	3 - 5.5							
	SRIO 2.5 Gbps	3 - 5.5							
	SRIO 3.125 Gbps			2 -	4			MHz	
	GIGE			2.5 -	4.5			MHz	
	SONET OC12			1.5 -	2.5			MHz	
	SONET OC48			3.5	- 6			MHz	
Transceiver-FPGA Fabric In	terface								
Interface speed	_	25	_	325	25	_	250	MHz	
Digital reset pulse width	_		Minimu	ım is two pa	arallel cloc	k cycles		_	

Notes to Table 1-35:

- (1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ255, EP2AGZ300, and EP2AGZ350.
- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–39 lists typical transmitter pre-emphasis levels for Arria II GZ devices (in dB) for the first post tap under the following conditions (low-frequency data pattern [five 1s and five 0s] at 6.25 Gbps). The levels listed in Table 1–39 are a representation of possible pre-emphasis levels under the specified conditions only and that the pre-emphasis levels may change with data pattern and data rate.

To predict the pre-emphasis level for your specific data rate and pattern, run simulations using the Arria II HSSI HSPICE models.

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 1 of 2)

Pre- Emphasis				V _{od} S	etting		_	T
1st Post-Tap Setting	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	N/A	0.7	0	0	0	0	0	0
2	N/A	1	0.3	0	0	0	0	0
3	N/A	1.5	0.6	0	0	0	0	0
4	N/A	2	0.7	0.3	0	0	0	0
5	N/A	2.7	1.2	0.5	0.3	0	0	0
6	N/A	3.1	1.3	0.8	0.5	0.2	0	0
7	N/A	3.7	1.8	1.1	0.7	0.4	0.2	0
8	N/A	4.2	2.1	1.3	0.9	0.6	0.3	0
9	N/A	4.9	2.4	1.6	1.2	0.8	0.5	0.2
10	N/A	5.4	2.8	1.9	1.4	1	0.7	0.3
11	N/A	6	3.2	2.2	1.7	1.2	0.9	0.4
12	N/A	6.8	3.5	2.6	1.9	1.4	1.1	0.6
13	N/A	7.5	3.8	2.8	2.1	1.6	1.2	0.6
14	N/A	8.1	4.2	3.1	2.3	1.7	1.3	0.7
15	N/A	8.8	4.5	3.4	2.6	1.9	1.5	0.8
16	N/A	N/A	4.9	3.7	2.9	2.2	1.7	0.9
17	N/A	N/A	5.3	4	3.1	2.4	1.8	1.1
18	N/A	N/A	5.7	4.4	3.4	2.6	2	1.2
19	N/A	N/A	6.1	4.7	3.6	2.8	2.2	1.4
20	N/A	N/A	6.6	5.1	4	3.1	2.4	1.5
21	N/A	N/A	7	5.4	4.3	3.3	2.7	1.7
22	N/A	N/A	8	6.1	4.8	3.8	3	2
23	N/A	N/A	9	6.8	5.4	4.3	3.4	2.3
24	N/A	N/A	10	7.6	6	4.8	3.9	2.6
25	N/A	N/A	11.4	8.4	6.8	5.4	4.4	3
26	N/A	N/A	12.6	9.4	7.4	5.9	4.9	3.3
27	N/A	N/A	N/A	10.3	8.1	6.4	5.3	3.6
28	N/A	N/A	N/A	11.3	8.8	7.1	5.8	4

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 2 of 10)

Symbol/	O-ndiki-n-		13			C4			C5, I5	5		C6		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter frequency = 0.06 KHz		> 15			> 15			> 15			> 15		UI
	Pattern = PRBS15													
	Jitter frequency = 100 KHZ		> 1.5			> 1.5	i		> 1.5			> 1.5		UI
Jitter tolerance at	Pattern = PRBS15													
2488.32 Mbps	Jitter frequency = 1 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
	Jitter frequency = 10 MHz		> 0.15			> 0.1	5		> 0.15	5		> 0.1	5	UI
	Pattern = PRBS15													
XAUI Transmit Jitt	er Generation <i>(3)</i>													
Total jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.3	_	_	0.3	_		0.3	_	_	0.3	UI
Deterministic jitter at 3.125 Gbps	Pattern = CJPAT	_	_	0.17		_	0.17	_		0.17	_	_	0.17	UI
XAUI Receiver Jitt	ter Tolerance <i>(3)</i>													
Total jitter	_		> 0.65			> 0.6	5		> 0.65	5		> 0.6	5	UI
Deterministic jitter	_		> 0.37			> 0.3	7		> 0.37	7		> 0.3	7	UI
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5	i		> 8.5	l		> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
PCIe Transmit Jitt	er Generation <i>(4)</i>				•			•			•			
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	_	_	0.25	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 9 of 10)

Symbol/	0		13			C4			C5, I	5		C6		11!4
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
OBSAI Receiver Ji	tter Tolerance <i>(12)</i>								•	•				
Deterministic jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.37			> 0.37	7		> 0.3	7		> 0.3	7	UI
Combined deterministic and random jitter tolerance at 768 Mbps, 1536 Mbps, and 3072 Mbps	Pattern = CJPAT		> 0.55			> 0.55	5		> 0.5	5		> 0.55	5	UI
	Jitter frequency = 5.4 KHz		> 8.5			> 8.5			> 8.5	5		> 8.5	j	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 768 Mbps	Jitter frequency = 460.8 KHz to 20 MHz		> 0.1			> 0.1		> 0.1		> 0.1			UI	
	Pattern = CJPAT													
	Jitter frequency = 10.9 KHz		> 8.5			> 8.5			> 8.5	i i		> 8.5	j	UI
Sinusoidal jitter	Pattern = CJPAT													
tolerance at 1536 Mbps	Jitter frequency = 921.6 KHz to 20 MHz		> 0.1			> 0.1			> 0.1			> 0.1		UI
	Pattern = CJPAT													

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 3 of 7)

Symbol/	Conditions	-	-C3 and	-l3		-C4 and	-14	Unit
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Peak-to-peak jitter	Jitter frequency = 22.1 KHz		> 8.5			> 8.5		UI
Peak-to-peak jitter	Jitter frequency = 1.875 MHz		> 0.1			> 0.1		UI
Peak-to-peak jitter	Jitter frequency = 20 MHz		> 0.1			> 0.1		UI
PCIe Transmit Jitter Generation	(8)							
Total jitter at 2.5 Gbps (Gen1)—x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	0.25	UI
Total jitter at 5 Gbps (Gen2)— x1, x4, and x8	Compliance pattern	_	_	0.25	_	_	_	UI
PCle Receiver Jitter Tolerance (8)							
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6			> 0.6		UI
Total jitter at 5 Gbps (Gen2)	Compliance pattern	N	ot suppo	rted	N	ot suppo	rted	UI
PCIe (Gen 1) Electrical Idle Dete	ct Threshold							
V _{RX-IDLE-DETDIFFp-p} (9)	Compliance pattern	65		175	65	_	175	UI
SRIO Transmit Jitter Generation	(10)							
Deterministic jitter	Data rate = 1.25, 2.5, 3.125 Gbps			0.17			0.17	UI
(peak-to-peak)	Pattern = CJPAT			0.17		_	0.17	UI
Total jitter (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_		0.35	_	_	0.35	UI
SRIO Receiver Jitter Tolerance ((10)							
Deterministic jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37	,		> 0.37		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55	i		> 0.55		UI
	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5		UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
	Jitter frequency = 20 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1			> 0.1		UI
GIGE Transmit Jitter Generation	(11)							
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	_	_	0.14	_	_	0.14	UI
								+

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 4 of 7)

Symbol/	Ooud!!!		–C3 and	–13	-	-C4 and	–14	U-22
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
GIGE Receiver Jitter Tolerance (11)	•				•		•
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.4			> 0.4		UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT		> 0.66	3		> 0.66	i	UI
HiGig Transmit Jitter Generation		•						•
Deterministic jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.17	_	_	_	UI
Total jitter (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT	_	_	0.35	_	_	_	UI
HiGig Receiver Jitter Tolerance		•						•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.37	,	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 3.75 Gbps Pattern = CJPAT		> 0.65	j	_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 8.5		_	_	_	UI
Sinusoidal jitter tolerance (peak- to-peak)	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
	Jitter frequency = 22.1 KHz Data rate = 3.75 Gbps Pattern = CJPAT		> 0.1		_	_	_	UI
(OIF) CEI Transmitter Jitter Gene	ration							
Total jitter (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS15 BER = 10 ⁻¹²	_	_	0.3	_	_	0.3	UI
(OIF) CEI Receiver Jitter Tolerand	Ce	•		•	•	•		•
Deterministic jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.67	5	_	_	_	UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps Pattern = PRBS31 BER = 10 ⁻¹²		> 0.98	8	_	_	_	UI

Table 1-41. Transceiver Block Jitter Specifications for Arria II GZ Devices (Note 1), (2) (Part 5 of 7)

Symbol/	O and Hillians		-C3 and	-l3	-	-C4 and	-14	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	Jitter Frequency = 38.2 KHz							
	Data rate = 6.375 Gbps		> 0.5		_	_	_	UI
	Pattern = PRBS31 BER = 10 ⁻¹²							
	Jitter Frequency = 3.82 MHz							
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 6.375 Gbps		> 0.05		_	_	_	UI
io-peak)	Pattern = PRBS31 BER = 10 ⁻¹²							
	Jitter Frequency = 20 MHz							
	Data rate = 6.375 Gbps		> 0.05		_	_	_	UI
	Pattern = PRBS31 BER = 10 ⁻¹²							
SDI Transmitter Jitter Generatio	n <i>(12)</i>				•			
	Data rate = 1.485 Gbps (HD)	_			_			
Alignment jitter	Pattern = color bar Low-frequency roll-off = 100 KHz	0.2	_	_	0.2	_	_	UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = color bar Low-frequency roll-off = 100 KHz	0.3	_	_	0.3	_	_	UI
SDI Receiver Jitter Tolerance (1	(2)				•			•
	Jitter frequency = 15 KHz							
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 2			> 2		UI
Cinunaidal iittar talaranaa (naak	Jitter frequency = 100 KHz							
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		UI
	Jitter frequency = 148.5 MHz							
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		UI
	Jitter frequency = 20 KHz							
	Data rate = 1.485 Gbps (HD) pattern = 75% color bar		>1			>1		UI
Sinusoidal iittar talaranaa (naak	Jitter frequency = 100 KHz							
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2		UI
	Jitter frequency = 148.5 MHz							
	Data rate = 1.485 Gbps (HD) Pattern = 75% color bar		> 0.2			> 0.2		UI
SAS Transmit Jitter Generation	,				1			
Total jitter at 1.5 Gbps (G1)	Pattern = CJPAT		_	0.55	_	_	0.55	UI
Deterministic jitter at 1.5 Gbps (G1)	Pattern = CJPAT	_	_	0.35	_	_	0.35	UI
Total jitter at 3.0 Gbps (G2)	Pattern = CJPAT			0.55	_		0.55	UI

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1-42 lists the clock tree specifications for Arria II GX devices.

Table 1-42. Clock Tree Performance for Arria II GX Devices

Clock Network		Unit		
	13, C4	C5,I5	C6	Unit
GCLK and RCLK	500	500	400	MHz
PCLK	420	350	280	MHz

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1-43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	llnit	
GIUCK NELWURK	–C3 and –I3	-C4 and -I4	Unit
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5	_	325	MHz
f _{VCO}	PLL VCO operating Range (2)	600	_	1,400	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
f _{EINDUTY}	External feedback clock input duty cycle	40	_	60	%
t _{INCCJ} (3),	Input clock cycle-to-cycle jitter (Frequency ≥ 100 MHz)	_	_	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency ≤ 100 MHz)	_	_	±750	ps (p-p)

Table 1-47. DSP Block Performance Specifications for Arria II GZ Devices (Note 1) (Part 2 of 2)

Mode	Resources Used	Performance					
Mode	Number of Multipliers	-3	-4	Unit			
Double mode	1	440	380	MHz			

Notes to Table 1-47:

- (1) Maximum is for fully pipelined block with Round and Saturation disabled.
- (2) Maximum for loopback input registers disabled, Round and Saturation disabled, and pipeline and output registers enabled.

Embedded Memory Block Specifications

Table 1–48 lists the embedded memory block specifications for Arria II GX devices.

Table 1-48. Embedded Memory Block Performance Specifications for Arria II GX Devices

		Resou	rces Used		Perfo	rmance		
Logic S Array C Block (MLAB) C S M9K Block S W S M9K S S M9K S S S M9K S S S S S S S S S S S S S S S S S S S	Mode	ALUTS	Embedded Memory	13	C4	C5,I5	C6	Unit
Memory	Single port 64 × 10	0	1	450	500	450	378	MHz
Array	Simple dual-port 32 × 20 single clock	0	1	270	500	450	378	MHz
	Simple dual-port 64 × 10 single clock	0	1	428	500	450	378	MHz
	Single-port 256 × 36	0	1	360	400	360	310	MHz
	Single-port 256 × 36, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Simple dual-port 256 × 36 single CLK	0	1	360	400	360	310	MHz
	Single-port 256 × 36 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	True dual port 512 × 18 single CLK	0	1	360	400	360	310	MHz
	True dual-port 512 × 18 single CLK, with the read-during-write option set to Old Data	0	1	250	280	250	210	MHz
	Min Pulse Width (clock high time)		_	900	850	950	1130	ps
	Min Pulse Width (clock low time)	_	_	730	690	770	920	ps

Table 1–49 lists the embedded memory block specifications for Arria II GZ devices.

Table 1–49. Embedded Memory Block Performance Specifications for Arria II GZ Devices (Note 1)

		Resou	rces Used		Perfor	mance		
MLAB (2)	Mode	ALUTs	TriMatrix Memory	C3	13	C4	14	Unit
	Single port 64 × 10	0	1	500	500	450	450	MHz
	Simple dual-port 32 × 20	0	1	500	500	450	450	MHz
	Simple dual-port 64 × 10	0	1	500	500	450	450	MHz
(2)	ROM 64 × 10	0	1	500	500	450	450	MHz
	ROM 32 × 20	0	1	500	500	450	450	MHz
	Single-port 256 × 36	0	1	540	540	475	475	MHz
	Simple dual-port 256 × 36	0	1	490	490	420	420	MHz
	Simple dual-port 256 × 36, with the read-during-write option set to Old Data	0	1	340	340	300	300	MHz
	True dual port 512 × 18	0	1	430	430	370	370	MHz
	True dual-port 512 × 18, with the read-during-write option set to Old Data	0	1	335	335	290	290	MHz
	ROM 1 Port	0	1	540	540	475	475	MHz
	ROM 2 Port	0	1	540	540	475	475	MHz
	Min Pulse Width (clock high time)	_	_	800	800	850	850	ps
	Min Pulse Width (clock low time)	_	_	625	625	690	690	ps
	Single-port 2K × 72	0	1	440	400	380	350	MHz
	Simple dual-port 2K × 72	0	1	435	375	385	325	MHz
	Simple dual-port 2K × 72, with the read-during-write option set to Old Data	0	1	240	225	205	200	MHz
	Simple dual-port 2K × 64 (with ECC)	0	1	300	295	255	250	MHz
M144K	True dual-port 4K × 36	0	1	375	350	330	310	MHz
Block (2)	True dual-port 4K × 36, with the read-during-write option set to Old Data	0	1	230	225	205	200	MHz
	ROM 1 Port	0	1	500	450	435	420	MHz
	ROM 2 Port	0	1	465	425	400	400	MHz
	Min Pulse Width (clock high time)	_	_	755	860	860	950	ps
	Min Pulse Width (clock low time)	_	_	625	690	690	690	ps

Notes to Table 1-48:

⁽¹⁾ To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL set to 50% output duty cycle. Use the Quartus II software to report timing for this and other memory block clocking schemes.

⁽²⁾ When you use the error detection CRC feature, there is no degradation in F_{MAX} .

Table 1-53. High-Speed I/O Specifications for Arria II GX Devices (Part 3 of 4)

Ohal	Conditions	13		C4		C5,I5		C6		11-14
Symbol	Conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	True LVDS with dedicated SERDES (data rate 600–1,250 Mbps)	_	175	_	175	_	225	_	300	ps
	True LVDS with dedicated SERDES (data rate < 600 Mbps)	_	0.105	_	0.105	_	0.135	_	0.18	UI
t _{TX_JITTER} (4)	True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate 600 – 945 Mbps)		260	_	260	_	300	ı	350	ps
	True LVDS and emulated LVDS_E_3R with logic elements as SERDES (data rate < 600 Mbps)	_	0.16	_	0.16	_	0.18	_	0.21	UI
t _{TX_DCD}	True LVDS and emulated LVDS_E_3R	45	55	45	55	45	55	45	55	%
t _{RISE} and t _{FALL}	True LVDS and emulated LVDS_E_3R	_	200	_	200	_	225	_	250	ps
T000	True LVDS (5)	_	150	_	150	_	175	_	200	ps
TCCS	Emulated LVDS_E_3R	_	200	_	200	_	250	_	300	ps
Receiver (6)										
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	1250	150	1250	150	1050	150	840	Mbps

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

O	O and Hillians		C3, I3			Unit		
Symbol	Conditions	Min Typ		Max	Max Min		Тур Мах	
f _{HSCLK_OUT} (output clock frequency)	_	5	_	717 (7)	5		717 (7)	MHz
Transmitter								
(SERDES factor, $J = 3$ to 10 (using dedicated SERDES) (8)	(4)	_	1250	(4)	_	1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)	_	(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) (5)	SERDES factor J = 4	(4)	_	1152	(4)	_	800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)	_	200	(4)	_	200	Mbps
t _x Jitter	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_	_	0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps	_	_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_	_	_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1-68. Glossary (Part 4 of 4)

Letter	Subject	Definitions
	V _{CM(DC)}	DC common mode input voltage.
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.
U,	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.
V,	V _{IH(AC)}	High-level AC input voltage.
\ \ \	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.
	V _{IL(AC)}	Low-level AC input voltage.
	V _{IL(DC)}	Low-level DC input voltage.
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.
W,		
X, Y,	W	High-speed I/O block: The clock boost factor.
Z		

Document Revision History

Table 1–69 lists the revision history for this chapter.

Table 1-69. Document Revision History (Part 1 of 2)

Date	Version	Changes
December 2013	4.4	Updated Table 1–34 and Table 1–35.
July 2012		■ Updated the V _{CCH_GXBL/R} operating conditions in Table 1–6.
	4.2	■ Finalized Arria II GZ information in Table 1–20.
	4.3	■ Added BLVDS specification in Table 1–32 and Table 1–33.
		■ Updated input and output waveforms in Table 1–68.
December 2011	1 4.2	■ Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		■ Minor text edits.
June 2011		■ Added Table 1–60.
	4.4	■ Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
	4.1	Updated the "Switching Characteristics" section introduction.
		Minor text edits.