
E·XFL

Intel - EP2AGZ350FF35I3N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	13940
Number of Logic Elements/Cells	348500
Total RAM Bits	21270528
Number of I/O	554
Number of Gates	-
Voltage - Supply	0.87V ~ 0.93V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep2agz350ff35i3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Minimum	Maximum	Unit
V _{CCA_L}	Supplies transceiver high voltage power (left side)	-0.5	3.75	V
V _{CCA_R}	Supplies transceiver high voltage power (right side)	-0.5	3.75	V
V_{CCHIP_L}	Supplies transceiver HIP digital power (left side)	-0.5	1.35	V
V _{CCR_L}	Supplies receiver power (left side)	-0.5	1.35	V
V _{CCR_R}	Supplies receiver power (right side)	-0.5	1.35	V
V _{CCT_L}	Supplies transmitter power (left side)	-0.5	1.35	V
V _{CCT_R}	Supplies transmitter power (right side)	-0.5	1.35	V
V _{CCL_GXBLn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (left side)	-0.5	1.35	V
V _{CCL_GXBRn} (1)	Supplies power to the transceiver PMA TX, PMA RX, and clocking (right side)	-0.5	1.35	V
V _{CCH_GXBLn} (1)	Supplies power to the transceiver PMA output (TX) buffer (left side)	-0.5	1.8	V
V _{CCH_GXBRn} (1)	Supplies power to the transceiver PMA output (TX) buffer (right side)	-0.5	1.8	V
TJ	Operating junction temperature	-55	125	°C
T _{STG}	Storage temperature (no bias)	-65	150	°C

Table 1–2. /	Absolute Maximum	Ratings for Arria	II GZ Devices	(Part 2 of 2)
--------------	------------------	-------------------	---------------	---------------

Note to Table 1-2:

(1) n = 0, 1, or 2.

Maximum Allowed Overshoot and Undershoot Voltage

During transitions, input signals may overshoot to the voltage shown in Table 1–3 and undershoot to -2.0 V for magnitude of currents less than 100 mA and periods shorter than 20 ns.

Table 1–3 lists the Arria II GX and GZ maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the device lifetime. The maximum allowed overshoot duration is specified as a percentage of high-time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 4.3 V can only be at 4.3 V for 5.41% over the lifetime of the device; for a device lifetime of 10 years, this amounts to 5.41/10ths of a year.

Symbol	Description	Condition	Minimum	Typical	Maximum	Unit
V _{CCL_GXBLn} (3)	Transceiver clock power (left side)	_	1.05	1.1	1.15	V
V _{CCL_GXBRn} (3)	Transceiver clock power (right side)	_	1.05	1.1	1.15	V
V _{CCH_GXBLn} (3)	Transmitter output buffer power (left side)	_	1.33/1.425	1.4/1.5 <i>(5)</i>	1.575	V
V _{CCH_GXBRn} (3)	Transmitter output buffer power (right side)	_	1.33/1.423	1.4/1.5 (5)	1.575	v
т	Operating junction temperature	Commercial	0	_	85	°C
TJ		Industrial	-40	_	100	°C
+	Power supply ramp time	Normal POR (PORSEL=0)	0.05	—	100	ms
t _{RAMP}		Fast POR (PORSEL=1)	0.05	_	4	ms

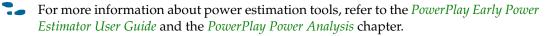
Notes to Table 1-6:

 Altera recommends a 3.0-V nominal battery voltage when connecting V_{CCBAT} to a battery for volatile key backup. If you do not use the volatile security key, you may connect the V_{CCBAT} to either GND or a 3.0-V power supply.

(2) V_{CCPD} must be 2.5 V when V_{CCI0} is 2.5, 1.8, 1.5, or 1.2 V. V_{CCPD} must be 3.0 V when V_{CCI0} is 3.0 V.

(3) n = 0, 1, or 2.

(4) V_{CCA_L/R} must be connected to a 3.0-V supply if the clock multiplier unit (CMU) phase-locked loop (PLL), receiver clock data recovery (CDR), or both, are configured at a base data rate > 4.25 Gbps. For data rates up to 4.25 Gbps, you can connect V_{CCA_L/R} to either 3.0 V or 2.5 V.


- (5) V_{CCH_GXBL/R} must be connected to a 1.4-V supply if the transmitter channel data rate is > 6.5 Gbps. For data rates up to 6.5 Gbps, you can connect V_{CCH_GXBL/R} to either 1.4 V or 1.5 V.
- (6) Transceiver power supplies do not have power-on-reset (POR) circuitry. After initial power-up, violating the transceiver power supply operating conditions could lead to unpredictable link behavior.

DC Characteristics

This section lists the supply current, I/O pin leakage current, on-chip termination (OCT) accuracy and variation, input pin capacitance, internal weak pull-up and pull-down resistance, hot socketing, and Schmitt trigger input specifications.

Supply Current

Standby current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Because these currents vary largely with the resources used, use the Microsoft Excel-based Early Power Estimator (EPE) to get supply current estimates for your design.

Table 1–10 lists the bus hold specifications for Arria II GZ devices.

			V _{CCI0} (V)										
Parameter	Symbol	Cond.	1	.2	1	.5	1	.8	2	.5	3	.0	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold Low sustaining current	I _{SUSL}	V _{IN} > V _{IL} (max.)	22.5	_	25.0	_	30.0	_	50.0	_	70.0	_	μΑ
Bus-hold High sustaining current	I _{SUSH}	V _{IN} < V _{IH} (min.)	-22.5	_	-25.0	_	-30.0	_	-50.0	_	-70.0	_	μΑ
Bus-hold Low overdrive current	I _{odl}	OV < V _{IN} < V _{CCIO}	_	120	_	160	_	200	_	300	_	500	μA
Bus-hold High overdrive current	I _{odh}	OV < V _{IN} < V _{CCIO}	_	-120	_	-160	_	-200	_	-300	_	-500	μA
Bus-hold trip point	V _{TRIP}	—	0.45	0.95	0.50	1.00	0.68	1.07	0.70	1.70	0.80	2.00	V

Table 1–10. Bus Hold Parameters for Arria II GZ Devices

OCT Specifications

Table 1–11 lists the Arria II GX device and differential OCT with and without calibration accuracy.

Gumbal	Description	Conditions (1/)	Calibratio	n Accuracy	11
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit
25-Ω R _S 3.0, 2.5	25-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
50-Ω R _S 3.0, 2.5	50-Ω series OCT without calibration	V _{CCI0} = 3.0, 2.5	± 30	± 40	%
25-Ω R _S 1.8	25-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
50-Ω R _S 1.8	50-Ω series OCT without calibration	V _{CCI0} = 1.8	± 40	± 50	%
25-Ω R _S 1.5, 1.2	25-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
50-Ω R _S 1.5, 1.2	50-Ω series OCT without calibration	V _{CCI0} = 1.5, 1.2	± 50	± 50	%
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	25- Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%

Sumbol	Description	Conditions (1/)	Calibration	n Accuracy	11
Symbol	Description	Conditions (V)	Commercial	Industrial	Unit
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	%
100-Ω R _D 2.5	100-Ω differential OCT without calibration	V _{CCI0} = 2.5	± 30	± 30	%

Table 1–11.	OCT With and Without Calibration Specification for Arria II GX Device I/Os	(Note 1) (Part 2 of 2)

Note to Table 1–11:

(1) OCT with calibration accuracy is valid at the time of calibration only.

Table 1–12 lists the OCT termination calibration accuracy specifications for Arria II GZ devices.

Table 1–12. OCT with Calibration Accuracy Specifications for Arria II GZ Devices	(Note 1)
--	----------

Sumhal	Description	Conditions (1)	Ca	cy	Unit	
Symbol	Description	Conditions (V)	C2	C3,I3	C4,14	Unit
25-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(2)</i>	25-Ω series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2	50- Ω internal series OCT with calibration	V _{CCI0} = 3.0, 2.5, 1.8, 1.5, 1.2	± 8	± 8	± 8	%
50-Ω R _T 2.5, 1.8, 1.5, 1.2	50- Ω internal parallel OCT with calibration	V _{CCIO} = 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
20-Ω , 40-Ω , and 60-Ω R _S 3.0, 2.5, 1.8, 1.5, 1.2 <i>(3)</i>	$20-\Omega$, $40-\Omega$ and $60-\Omega$ R _S expanded range for internal series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%
25-Ω R _{S_left_shift} 3.0, 2.5, 1.8, 1.5, 1.2	25-Ω R _{S_left_shift} internal left shift series OCT with calibration	V _{CCIO} = 3.0, 2.5, 1.8, 1.5, 1.2	± 10	± 10	± 10	%

Notes to Table 1-12:

(1) OCT calibration accuracy is valid at the time of calibration only.

(2) 25- Ω R_S is not supported for 1.5 V and 1.2 V in Row I/O.

(3) 20- Ω R_{S} is not supported for 1.5 V and 1.2 V in Row I/O.

Switching Characteristics

This section provides performance characteristics of the Arria II GX and GZ core and periphery blocks for commercial grade devices. The following tables are considered final and are based on actual silicon characterization and testing. These numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions.

Transceiver Performance Specifications

Table 1-34 lists the Arria II GX transceiver specifications.

Table 1-34. Transceiver Specifications for Arria II GX Devices (Note 1) (Part 1 of 7)

Symbol/			13			C4			C5 and I	5		C6		
Description	Condition	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								÷	•		•			
Supported I/O Standards			1	.2-V PCML,	1.5-V PC	CML, 2.5-V	/ PCML, Diff	erential LV	PECL, LVD	S, and HCS	L			
Input frequency from REFCLK input pins	_	50	_	622.08	50	_	622.08	50	_	622.08	50	_	622.08	MHz
Input frequency from PLD input	_	50	_	200	50	_	200	50	_	200	50	_	200	MHz
Absolute V _{MAX} for a REFCLK pin	_	—	_	2.2	_	_	2.2	_	_	2.2	_	_	2.2	V
Absolute V _{MIN} for a REFCLK pin	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
Rise/fall time (2)	—	—	—	0.2			0.2		—	0.2			0.2	UI
Duty cycle	—	45	—	55	45	_	55	45	—	55	45	_	55	%
Peak-to-peak differential input voltage	_	200	_	2000	200	_	2000	200	_	2000	200	_	2000	mV
Spread-spectrum modulating clock frequency	PCIe	30	_	33	30	_	33	30	_	33	30	_	33	kHz

Table 1–35 lists the transceiver specifications for Arria II GZ devices.

Symbol/	0 and 111 and	-	C3 and –I3	(1)		-C4 and -	14	Ilait
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Reference Clock								
Supported I/O Standards	1.2-V PCML,	1.5-V PC	ML, 2.5-V	PCML, Diffe	rential LV	PECL, LVD	S, and HCS	L
Input frequency from REFCLK input pins	_	50	—	697	50	_	637.5	MHz
Phase frequency detector (CMU PLL and receiver CDR)	_	50	_	325	50	_	325	MHz
Absolute V_{MAX} for a \texttt{REFCLK} pin	_	_	_	1.6	_	_	1.6	V
Operational V _{MAX} for a REFCLK pin	_	_	_	1.5	_	_	1.5	V
Absolute V_{MIN} for a ${\tt REFCLK}$ pin	—	-0.4	_	_	-0.4	_	_	V
Rise/fall time (2)			—	0.2	—		0.2	UI
Duty cycle	—	45	—	55	45	—	55	%
Peak-to-peak differential input voltage	_	200	_	1600	200	_	1600	mV
Spread-spectrum modulating clock frequency	PCle	30	_	33	30	_	33	kHz
Spread-spectrum downspread	PCIe	_	0 to -0.5%	—	_	0 to -0.5%	_	_
On-chip termination resistors	_	_	100		_	100		Ω
V _{ICM} (AC coupled)			1100 ± 10	%		1100 ± 10	%	mV
V _{ICM} (DC coupled)	HCSL I/O standard for PCIe reference clock	250	_	550	250	_	550	mV
	10 Hz		—	-50	—		-50	dBc/Hz
	100 Hz		—	-80	—	—	-80	dBc/H
Transmitter REFCLK Phase	1 KHz	—		-110	_		-110	dBc/H
Noise	10 KHz			-120	_		-120	dBc/Hz
	100 KHz			-120			-120	dBc/Hz
	≥ 1 MHz	—		-130			-130	dBc/H
Transmitter REFCLK Phase Jitter (rms) for 100 MHz REFCLK <i>(3)</i>	10 KHz to 20 MHz		_	3			3	ps
R _{REF}	_		2000 ± 1%		_	2000 ± 1%	_	Ω

Symbol/	Conditions	-	C3 and –I3	; (1)		-C4 and -	14	IInit		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	- Unit		
	PCIe Gen1	2.5 - 3.5								
	PCIe Gen2	6 - 8								
-3 dB Bandwidth	(OIF) CEI PHY at 4.976 Gbps	7 - 11								
	(OIF) CEI PHY at 6.375 Gbps	5 - 10								
	XAUI	2 - 4								
	SRIO 1.25 Gbps	3 - 5.5								
	SRIO 2.5 Gbps	3 - 5.5						MHz		
	SRIO 3.125 Gbps	2 - 4								
	GIGE	2.5 - 4.5								
	SONET 0C12			1.5 -	2.5			MHz		
	SONET OC48			3.5	- 6			MHz		
Transceiver-FPGA Fabric I	nterface	-								
Interface speed	—	25		325	25		250	MHz		
Digital reset pulse width	—		Minim	Minimum is two parallel clock cycles						

Table 1–35. Transceiver Specifications for Arria II GZ Devices (Part 5 of 5)

Notes to Table 1-35:

(1) The 3x speed grade is the fastest speed grade offered in the following Arria II GZ devices: EP2AGZ225, EP2AGZ300, and EP2AGZ350.

- (2) The rise and fall time transition is specified from 20% to 80%.
- (3) To calculate the REFCLK rms phase jitter requirement at reference clock frequencies other than 100 MHz, use the following formula: REFCLK rms phase jitter at f (MHz) = REFCLK rms phase jitter at 100 MHz * 100/f.
- (4) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver only** or **Receiver and Transmitter** mode.
- (5) If your design uses more than one dynamic reconfiguration controller (altgx_reconfig) instances to control the transceiver (altgx) channels physically located on the same side of the device AND if you use different reconfig_clk sources for these altgx_reconfig instances, the delta time between any two of these reconfig_clk sources becoming stable must not exceed the maximum specification listed.
- (6) The device cannot tolerate prolonged operation at this absolute maximum.
- (7) You must use the 1.1-V RX V_{ICM} setting if the input serial data standard is LVDS.
- (8) The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level. Use H-Spice simulation to derive the minimum eye opening requirement with Receiver Equalization enabled.
- (9) The rate matcher supports only up to \pm 300 ppm.
- (10) Time taken to rx_pll_locked goes high from rx_analogreset de-assertion. Refer to Figure 1-1 on page 1-33.
- (11) Time for which the CDR must be kept in lock-to-reference mode after rx_pll_locked goes high and before rx_locktodata is asserted in manual mode. Refer to Figure 1–1 on page 1–33.
- (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode. Refer to Figure 1-1 on page 1-33.
- (13) Time taken to recover valid data after the rx freqlocked signal goes high in automatic mode. Refer to Figure 1-2 on page 1-33.
- (14) A GPLL may be required to meet the PMA-FPGA fabric interface timing above certain data rates. For more information, refer to the *Transceiver Clocking for Arria II Devices* chapter.
- (15) The Quartus II software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.
- (16) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Figure 1–3 shows the differential receiver input waveform.

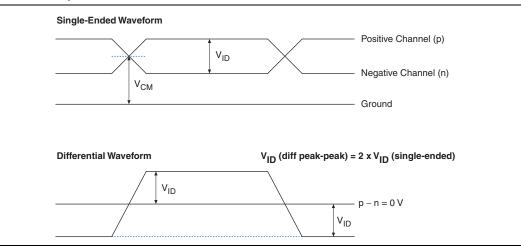


Figure 1–4 shows the transmitter output waveform.

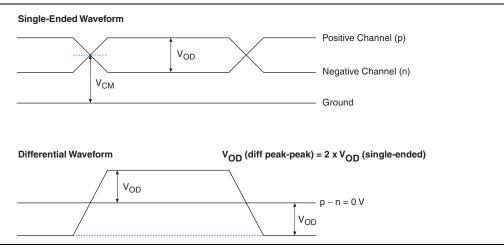


Table 1–36 lists the typical V_{OD} for TX term that equals 85 Ω for Arria II GZ devices.

Table 1–36. 1	Typical V _{on} Setting,	, TX Term = 85 Ω for Arria II GZ Dev	ices
---------------	----------------------------------	---	------

Symbol	V _{OD} Setting (mV)										
Symbol	0	1	2	3	4	5	6	7			
V _{OD} differential peak-to-peak Typical (mV)	170 ± 20%	340 ± 20%	510 ± 20%	595 ± 20%	680 ± 20%	765 ± 20%	850 ± 20%	1020± 20%			

Pre-		V _{0D} Setting											
Emphasis 1st Post-Tap Setting	0	1	2	3	4	5	6	7					
29	N/A	N/A	N/A	12.5	9.6	7.7	6.3	4.3					
30	N/A	N/A	N/A	N/A	11.4	9	7.4	N/A					
31	N/A	N/A	N/A	N/A	12.9	10	8.2	N/A					

Table 1–39. Transmitter Pre-Emphasis Levels for Arria II GZ Devices (Part 2 of 2)

Table 1–40 lists the transceiver jitter specifications for all supported protocols for Arria II GX devices.

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 1 of 10)

Symbol/			13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SONET/SDH Transn	ONET/SDH Transmit Jitter Generation (2)													
Peak-to-peak jitter at 622.08 Mbps	Pattern = PRBS15			0.1	_	_	0.1	_	_	0.1	_		0.1	UI
RMS jitter at 622.08 Mbps	Pattern = PRBS15	_	_	0.01	_	_	0.01	_	_	0.01	_	_	0.01	UI
Peak-to-peak jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.1	_	_	0.1	_	_	0.1	_	_	0.1	UI
RMS jitter at 2488.32 Mbps	Pattern = PRBS15		_	0.01	_	—	0.01	_		0.01	_	_	0.01	UI
SONET/SDH Receiv	ver Jitter Tolerance	(2)												
	Jitter frequency = 0.03 KHz		> 15			> 15			> 15			> 15		UI
Jitter tolerance at 622.08 Mbps	Pattern = PRBS15 Jitter frequency = 25 KHZ Pattern = PRBS15		> 1.5		> 1.5		> 1.5		> 1.5		i	UI		
	Jitter frequency = 250 KHz Pattern = PRBS15	> 0.15		> 0.15		> 0.15		> 0.15		UI				

Symbol/	Oraditions		13			C4			C5, I	5	C6			
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	- Unit
PCIe Receiver Jitt	er Tolerance <i>(4)</i>				-									
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern		> 0.6		> 0.6			> 0.6			> 0.6			UI
PCIe (Gen 1) Elect	rical Idle Detect Th	reshold	(9)											
VRX-IDLE- DETDIFF (p-p)	Compliance pattern	65	_	175	65	_	175	65	_	175	65	_	175	mV
Serial RapidIO® (S	RIO) Transmit Jitter	Genera	tion <i>(5)</i>)										
Deterministic jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.17	_	_	0.17	_	_	0.17	_	_	0.17	UI
Total jitter (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT	_	_	0.35	_	_	0.35	_	_	0.35	_		0.35	UI
SRIO Receiver Jitt														
Deterministic jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.37		> 0.37		> 0.37			> 0.37			UI	
Combined deterministic and random jitter tolerance (peak-to-peak)	Data Rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.55		> 0.55		> 0.55			> 0.55			UI	
<u> </u>	Jitter frequency = 22.1 KHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 8.5			> 8.5	5	> 8.5			> 8.5			UI
Sinusoidal jitter tolerance (peak-to-peak)	Jitter frequency = 1.875 MHz Data rate = 1.25, 2.5, 3.125 Gbps Pattern = CJPAT		> 0.1		> 0.1		> 0.1			> 0.1			UI	
	Jitter frequency = 20 MHz													
	Data rate = 1.25, 2.5, 3.125 Gbps		> 0.1			> 0.1		> 0.1				> 0.1		UI
	Pattern = CJPAT													
GIGE Transmit Jitt	er Generation <i>(6)</i>	1	1		1	1		r	1		1	r		
Deterministic jitter (peak-to-peak)	Pattern = CRPAT	-	-	0.14	_	-	0.14	_	_	0.14	-		0.14	UI

Table 1-40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 3 of 10)

Symbol/	Oanditiana		13			C4			C5, I	5	C6			11 14
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SDI Transmitter J	itter Generation <i>(8)</i>		• •	-	-									
Alignment jitter (peak-to-peak)	Data rate = 1.485 Gbps (HD) pattern = Color Bar Low- frequency Roll-off = 100 KHz	0.2			0.2		_	0.2		_	0.2			UI
(peak-to-peak)	Data rate = 2.97 Gbps (3G) pattern = Color bar Low- frequency Roll-off = 100 KHz	0.3		_	0.3	_	_	0.3	_	_	0.3			UI
SDI Receiver Jitte	er Tolerance <i>(8)</i>													
	Jitter frequency = 15 KHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 2				> 2		> 2			> 2			UI
	Jitter frequency = 100 KHz													
Sinusoidal jitter tolerance (peak-to-peak)	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar		> 0.3			> 0.3		> 0.3				> 0.3		UI
	Jitter frequency = 148.5 MHz													
	Data rate = 2.97 Gbps (3G) Pattern = single line scramble color bar	> 0.3			> 0.3		> 0.3			> 0.3			UI	

Table 1–40. Transceiver Block Jitter Specifications for Arria II GX Devices (Note 1) (Part 5 of 10)

Core Performance Specifications for the Arria II Device Family

This section describes the clock tree, phase-locked loop (PLL), digital signal processing (DSP), embedded memory, configuration, and JTAG specifications for Arria II GX and GZ devices.

Clock Tree Specifications

Table 1–42 lists the clock tree specifications for Arria II GX devices.

Table 1-42.	Clock Tree Performan	ce for Arria II GX Devices
-------------	-----------------------------	----------------------------

Clock Network		Unit			
GIUCK NELWUIK	I 3, C4	C5,I5	C6	Unit	
GCLK and RCLK	500	500	400	MHz	
PCLK	420	350	280	MHz	

Table 1–43 lists the clock tree specifications for Arria II GZ devices.

Table 1–43. Clock Tree Performance for Arria II GZ Devices

Clock Network	Perfo	rmance	Unit
GIUCK NELWUIK	–C3 and –I3	-C4 and -14	UIII
GCLK and RCLK	700	500	MHz
PCLK	500	450	MHz

PLL Specifications

Table 1–44 lists the PLL specifications for Arria II GX devices.

Table 1-44. PLL Specifications for Arria II GX Devices (Part 1 of 3)

Symbol	Description	Min	Тур	Max	Unit
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–4 Speed Grade)	5	_	670 (1)	MHz
f _{IN}	Input clock frequency (from clock input pins residing in right/top/bottom banks) (–5 Speed Grade)	5	_	622 (1)	MHz
	Input clock frequency (from clock input pins residing in right/top/bottom banks) (-6 Speed Grade)	5	_	500 (1)	MHz
f _{INPFD}	Input frequency to the PFD	5		325	MHz
f _{VC0}	PLL VCO operating Range (2)	600		1,400	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INCCJ} <i>(3)</i> ,	Input clock cycle-to-cycle jitter (Frequency \geq 100 MHz)	—	—	0.15	UI (p-p)
(4)	Input clock cycle-to-cycle jitter (Frequency \leq 100 MHz)	—	—	±750	ps (p–p)

Symbol	Conditiono	Conditions 13		C4		C5,I5		C6		Unit
Symbol	Gomarcions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	SERDES factor J = 3 to 10	(3)	945 <i>(7)</i>	(3)	945 <i>(7)</i>	(3)	740 (7)	(3)	640 <i>(7)</i>	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2 (using DDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
	SERDES factor J = 1 (using SDR registers)	(3)	(7)	(3)	(7)	(3)	(7)	(3)	(7)	Mbps
Soft-CDR PPM tolerance	Soft-CDR mode	_	300		300	_	300	_	300	±PPM
DPA run length	DPA mode	_	10,000	_	10,000		10,000	_	10,000	UI
Sampling window (SW)	Non-DPA mode (5)		300	_	300		350	_	400	ps

Table 1–53. High-Speed I/O Specifications for Arria II GX Devices (Part 4 of 4)

Notes to Table 1-53:

(1) f_{HSCLK_IN} = f_{HSDR} / W. Use W to determine the supported selection of input reference clock frequencies for the desired data rate.

(2) Applicable for interfacing with DPA receivers only. For interfacing with non-DPA receivers, you must calculate the leftover timing margin in the receiver by performing link timing closure analysis. For Arria II GX transmitter to Arria II GX non-DPA receiver, the maximum supported data rate is 945 Mbps. For data rates above 840 Mbps, perform PCB trace compensation by adjusting the PCB trace length for LVDS channels to improve channel-to-channel skews.

- (3) The minimum and maximum specification depends on the clock source (for example, PLL and clock pin) and the clock routing resource you use (global, regional, or local). The I/O differential buffer and input register do not have a minimum toggle rate.
- (4) The specification is only applicable under the influence of core noise.
- (5) Applicable for true LVDS using dedicated SERDES only.
- (6) Dedicated SERDES and DPA features are only available on the right banks.
- (7) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and the receiver sampling margin to determine the leftover timing margin.

Table 1–54 lists the high-speed I/O timing for Arria II GZ devices.

Symbol			C3, I3			C4, I4		
Symbol	Conditions	Min	Тур	Мах	Min	Тур	Мах	Unit
Clock		<u>.</u>	-			<u>.</u>		
f _{HSCLK_in} (input clock frequency) true differential I/O standards	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(9)</i>	Clock boost factor W = 1 to 40 (3)	5	_	717	5	_	717	MHz
f _{HSCLK_in} (input clock frequency) single ended I/O standards <i>(10)</i>	Clock boost factor W = 1 to 40 (3)	5	_	420	5	_	420	MHz

0l.al	0	C3, I3				II.a.i.t		
Symbol	Conditions	Min	Тур	Max	Min	Тур	Мах	Unit
f _{HSCLK_OUT} (output clock frequency)	_	5		717 (7)	5		717 <i>(7)</i>	MHz
Transmitter								
	SERDES factor, J = 3 to 10 (using dedicated SERDES) (8)	(4)		1250	(4)	_	1250	Mbps
f _{HSDR} (true LVDS output data rate)	SERDES factor J = 2, (using DDR registers)	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, (uses an SDR register)	(4)	_	(5)	(4)		(5)	Mbps
f _{HSDR} (emulated LVDS_E_3R output data rate) <i>(5)</i>	SERDES factor J = 4	(4)	_	1152	(4)		800	Mbps
f _{HSDR} (emulated LVDS_E_1R output data rate)	to 10	(4)		200	(4)	_	200	Mbps
t _{x Jitter}	Total jitter for data rate, 600 Mbps to 1.6 Gbps	_	_	160	_	_	160	ps
	Total jitter for data rate, < 600 Mbps	_	_	0.1	_		0.1	UI
t _{x Jitter} - emulated differential I/O standards with three	Total jitter for data rate, 600 Mbps to 1.25 Gbps	_	_	300	_	_	325	ps
external output resistor network	Total jitter for data rate < 600 Mbps		_	0.2	_	_	0.25	UI
t _{x Jitter} - emulated differential I/O standards with one external output resistor network	_		_	0.15	_	_	0.15	UI
t _{DUTY}	TX output clock duty cycle for both True and emulated differential I/O standards	45	50	55	45	50	55	%

Table 1–54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 2 of 3)

• • •			C3, I3					
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Unit
	True differential I/O standards		_	200	_	_	200	ps
t _{rise &} t _{fall}	Emulated differential I/O standards with three external output resistor networks		_	250	_	_	300	ps
	Emulated differential I/O standards with one external output resistor	_	_	500	_	_	500	ps
	True LVDS			100			100	ps
TCCS	Emulated LVDS_E_3R	_	_	250	_	_	250	ps
Receiver								
True differential I/O standards - f _{HSDRDPA} (data rate)	SERDES factor J = 3 to 10	150	_	1250	150	_	1250	Mbps
	SERDES factor J = 3 to 10	(4)	_	(6)	(4)	_	(6)	Mbps
f _{HSDR} (data rate)	SERDES factor J = 2, uses DDR registers	(4)	_	(5)	(4)	_	(5)	Mbps
	SERDES factor J = 1, uses an SDR register	(4)	_	(5)	(4)	_	(5)	Mbps
DPA run length	DPA mode		—	10000	—	—	10000	UI
Soft-CDR PPM tolerance	Soft-CDR mode	_	_	300	_	_	300	± PPM
Sampling Window (SW)	Non-DPA mode	_	_	300	_		300	ps

Table 1-54. High-Speed I/O Specifications for Arria II GZ Devices (Note 1), (2), (10) (Part 3 of 3)

Notes to Table 1-54:

(1) When J = 3 to 10, use the SERDES block.

(2) When J = 1 or 2, bypass the SERDES block.

(3) Clock Boost Factor (W) is the ratio between input data rate to the input clock rate.

- (4) The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and input register do not have a minimum toggle rate.
- (5) You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine leftover timing margin.
- (6) You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and the receiver sampling margin to determine the maximum data rate supported.
- (7) This is achieved by using the LVDS and DPA clock network.
- (8) If the receiver with DPA enabled and transmitter are using shared PLLs, the minimum data rate is 150 Mbps.
- (9) This only applies to DPA and soft-CDR modes.
- (10) This only applies to LVDS source synchronous mode.

Table 1-55 lists DPA lock time specifications for Arria II GX and GZ devices.

IOE Programmable Delay

Table 1–66 lists the delay associated with each supported IOE programmable delay chain for Arria II GX devices.

Table 1-66.	IOE Prog	rammable Dela	y for Arria II	GX Devices
-------------	----------	---------------	----------------	-------------------

	Available	Minimum			Maximum Offset						
Parameter	Settings	Settings Offset		Fast Model		Slow Model					Unit
	(1)	(2)	13	C4	15	13	C4	C5	15	C6	
Output enable pin delay	7	0	0.413	0.442	0.413	0.814	0.713	0.796	0.801	0.873	ns
Delay from output register to output pin	7	0	0.339	0.362	0.339	0.671	0.585	0.654	0.661	0.722	ns
Input delay from pin to internal cell	52	0	1.494	1.607	1.494	2.895	2.520	2.733	2.775	2.944	ns
Input delay from pin to input register	52	0	1.493	1.607	1.493	2.896	2.503	2.732	2.774	2.944	ns
DQS bus to input register delay	4	0	0.074	0.076	0.074	0.140	0.124	0.147	0.147	0.167	ns

Notes to Table 1-66:

(1) The available setting for every delay chain starts with zero and ends with the specified maximum number of settings.

(2) The minimum offset represented in the table does not include intrinsic delay.

Table 1–67 lists the IOE p	programmable delay	y settings for Arria	II GZ devices.

Table 1–67. IOE Programmable Delay for Arria II GZ Devices

	Available								
Parameter	Settings	ings Offset (2)	Fast	Model		Slow	Model		Unit
	(1)		Industrial	Commercial	C3	13	C4	14	
D1	15	0	0.462	0.505	0.795	0.801	0.857	0.864	ns
D2	7	0	0.234	0.232	0.372	0.371	0.407	0.405	ns
D3	7	0	1.700	1.769	2.927	2.948	3.157	3.178	ns
D4	15	0	0.508	0.554	0.882	0.889	0.952	0.959	ns
D5	15	0	0.472	0.500	0.799	0.817	0.875	0.882	ns
D6	6	0	0.186	0.195	0.319	0.321	0.345	0.347	ns

Notes to Table 1-67:

(1) You can set this value in the Quartus II software by selecting D1, D2, D3, D4, D5, and D6 in the Assignment Name column.

(2) Minimum offset does not include the intrinsic delay.

I/O Timing

Altera offers two ways to determine I/O timing:

- Using the Microsoft Excel-based I/O Timing.
- Using the Quartus II Timing Analyzer.

The Microsoft Excel-based I/O Timing provides pin timing performance for each device density and speed grade. The data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the link timing analysis. The Quartus II timing analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

The Microsoft Excel-based I/O Timing spreadsheet is downloadable from the Literature: Arria II Devices web page.

Glossary

Table 1–68 lists the glossary for this chapter.

Table 1-68. Glossary (Part 1 of 4)

Letter	Subject	Definitions
A, B, C, D	Subject Differential I/O Standards	Definitions Receiver Input Waveforms Single-Ended Waveform V_{ID} Positive Channel (p) = V _{IH} Negative Channel (n) = V _{IL} Ground Differential Waveform V_{ID} V_{OD} V_{ID} V_{OD} V_{OD} V_{OD} V_{OD} V_{OD} V_{OD}
		V _{OD}
	f _{HSCLK}	Left/Right PLL input clock frequency.
E, F	f _{HSDR}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDR} = 1/TUI), non-DPA.
•	f _{hsdrdpa}	High-speed I/O block: Maximum/minimum LVDS data transfer rate (f _{HSDRDPA} = 1/TUI), DPA.

Letter	Subject	Definitions		
	V _{CM(DC)}	DC common mode input voltage.		
	V _{ICM}	Input common mode voltage: The common mode of the differential signal at the receiver.		
	V _{ID}	Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.		
	V _{DIF(AC)}	AC differential input voltage: Minimum AC input differential voltage required for switching.		
	V _{DIF(DC)}	DC differential input voltage: Minimum DC input differential voltage required for switching.		
	V _{IH}	Voltage input high: The minimum positive voltage applied to the input which is accepted by the device as a logic high.		
U, V	V _{IH(AC)}	High-level AC input voltage.		
V	V _{IH(DC)}	High-level DC input voltage.		
	V _{IL}	Voltage input low: The maximum positive voltage applied to the input which is accepted by the device as a logic low.		
	V _{IL(AC)}	Low-level AC input voltage.		
	V _{IL(DC)}	Low-level DC input voltage.		
	V _{OCM}	Output common mode voltage: The common mode of the differential signal at the transmitter.		
	V _{OD}	Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter.		
W,				
Х,	w	Lligh anged 1/0 block. The clock begat factor		
Y,	vv	High-speed I/O block: The clock boost factor.		
Z				

Document Revision History

Table 1–69 lists the revision history for this chapter.

 Table 1–69. Document Revision History (Part 1 of 2)

Date	Version	Changes
December 2013	4.4	Updated Table 1–34 and Table 1–35.
	4.0	 Updated the V_{CCH_GXBL/R} operating conditions in Table 1–6.
July 2012		 Finalized Arria II GZ information in Table 1–20.
July 2012	4.3	 Added BLVDS specification in Table 1–32 and Table 1–33.
		 Updated input and output waveforms in Table 1–68.
December 2011	4.2	 Updated Table 1–32, Table 1–33, Table 1–34, Table 1–35, Table 1–40, Table 1–41, Table 1–54, and Table 1–67.
		 Minor text edits.
	4.1	Added Table 1–60.
lune 0011		Updated Table 1–32, Table 1–33, Table 1–38, Table 1–41, and Table 1–61.
June 2011		 Updated the "Switching Characteristics" section introduction.
		 Minor text edits.

Table 1-69.	Document	Revision	Historv	(Part 2 of 2)
				(

Date	Version	Changes			
		 Added Arria II GZ information. 			
December 2010		 Added Table 1–61 with Arria II GX information. 			
	4.0	 Updated Table 1–1, Table 1–2, Table 1–5, Table 1–6, Table 1–7, Table 1–11, Table 1–35, Table 1–37, Table 1–40, Table 1–42, Table 1–44, Table 1–45, Table 1–57, Table 1–61, and Table 1–63. 			
		 Updated Figure 1–5. 			
		 Updated for the Quartus II version 10.0 release. 			
		 Updated the first paragraph for searchability. 			
		 Minor text edits. 			
		 Updated Table 1–1, Table 1–4, Table 1–16, Table 1–19, Table 1–21, Table 1–23, Table 1–25, Table 1–26, Table 1–30, and Table 1–35 			
		 Added Table 1–27 and Table 1–29. 			
July 2010	2.0	 Added I3 speed grade information to Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Table 1–35. 			
July 2010	3.0	 Updated the "Operating Conditions" section. 			
		 Removed "Preliminary" from Table 1–19, Table 1–21, Table 1–22, Table 1–23, Table 1–24, Table 1–25, Table 1–26, Table 1–28, Table 1–30, Table 1–32, Table 1–33, Table 1–34, and Figure 1–4. 			
		 Minor text edits. 			
		Updated for the Quartus II version 9.1 SP2 release:			
March 2010	2.3	 Updated Table 1–3, Table 1–7, Table 1–19, Table 1–21, Table 1–22, Table 1–24, Table 1–25 and Table 1–33. 			
		 Updated "Recommended Operating Conditions" section. 			
		 Minor text edits. 			
February 2010	2.2	Updated Table 1–19.			
		Updated for Arria II GX v9.1 SP1 release:			
February 2010	2.1	■ Updated Table 1–19, Table 1–23, Table 1–28, Table 1–30, and Table 1–33.			
	2.1	Added Figure 1–5.			
		 Minor text edits. 			
		Updated for Arria II GX v9.1 release:			
		 Updated Table 1–1, Table 1–4, Table 1–13, Table 1–14, Table 1–19, Table 1–15, Table 1–22, Table 1–24, and Table 1–28. 			
November 2009	2.0	Added Table 1–6 and Table 1–33.			
		Added "Bus Hold" on page 1–5.			
		 Added "IOE Programmable Delay" section. 			
		Minor text edit.			
lune 2000	10	 Updated Table 1–1, Table 1–3, Table 1–7, Table 1–8, Table 1–18, Table 1–23, Table 1–25, Table 1–26, Table 1–29, Table 1–30, Table 1–31, Table 1–32, and Table 1–33. 			
June 2009	1.2	Added Table 1–32.			
		■ Updated Equation 1–1.			
March 2009	1.1	Added "I/O Timing" section.			
February 2009	1.0	Initial release.			