
Microchip Technology - ATMEGA8A-AN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega8a-an

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8a-an-4387683
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1. Description
The Atmel AVR core combines a rich instruction set with 32 general purpose working registers. All the 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to
be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code
efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega8A provides the following features: 8K bytes of In-System Programmable Flash with Read-
While- Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23 general purpose I/O lines, 32
general purpose working registers, three flexible Timer/Counters with compare modes, internal and
external interrupts, a serial programmable USART, one byte oriented Two-wire Serial Interface, a 6-
channel ADC (eight channels in TQFP and QFN/MLF packages) with 10-bit accuracy, a programmable
Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving
modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, one SPI port, and
interrupt system to continue functioning. The Power-down mode saves the register contents but freezes
the Oscillator, disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save
mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest
of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except
asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode,
the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast
start-up combined with low-power consumption.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders and wheels functionality
into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and
includes fully debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS®)
technology for unambiguous detection of key events. The easy-to-use QTouch Composer allows you to
explore, develop and debug your own touch applications.

The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP
Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a
conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core.
The Boot program can use any interface to download the application program in the Application Flash
memory. Software in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel ATmega8A is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded control applications.

The device is supported with a full suite of program and system development tools including: C
Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kit.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

9

6. I/O Multiplexing
Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be
assigned to one of the peripheral functions. This table describes the peripheral signals multiplexed to the
PORT I/O pins.

Table 6-1 PORT Function Multiplexing

PAD Pin # EXTINT PCINT AC Custom OSC TC1(16-
bit)

TC2(8-bit) USART SPI Misc

PD[4] 14 PCINT20 ACO - - O1CA - -

PB[6] 1 PCINT06 - - EXTCLK - - - -

PD[5] 2 PCINT21 AINP1 - - CLK1 - - SII

PD[6] 3 PCINT22 AINP0 - - ICP1 - - - SDO

PD[7] 4 PCINT23 AINN0 - - - TC2-OCB - - SDI

PB[2] 5 PCINT02 - CLO0 CLKOUT TC1-OCB - - SS

PB[3] 6 PCINT03 - - - TC2-OCA TXD MOSI

PB[4] 7 PCINT04 - - - - - RXD MISO

PB[5] 8 PCINT05 - CLO1 - - - XCK SCK

PC[4] 9 PCINT12 AINN1 - - - - - -

PC[5] 10 INT0 PCINT13 AINN2 - - - - - -

PC[6]/
RESET

13 PCINT14 - - - - - - HVRST/d
W

VCC 11

GND 12

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

20

Figure 11-3 The X-, Y- and Z-Registers
15 XH XL 0

X-regis te r 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-regis te r 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-regis te r 7 0 7 0

R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

11.5. Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return
addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from
higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The
Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located.
A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the
Stack Pointer must be set to point above start of the SRAM, see Figure Data Memory Map in SRAM Data
Memory.

See table below for Stack Pointer details.

Table 11-1 Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from subroutine or
return from interrupt

The Atmel AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits
actually used is implementation dependent. Note that the data space in some implementations of the AVR
architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

Related Links
SRAM Data Memory on page 34

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

29

Table 13-4 Start-up Times for the Crystal Oscillator Clock Selection

CKSEL0 SUT1:0 Start-up Time
from Power-down
and Power-save

Additional Delay
from Reset
(VCC = 5.0V)

Recommended Usage

0 00 258 CK(1) 4.1ms Ceramic resonator, fast rising power

0 01 258 CK(1) 65ms Ceramic resonator, slowly rising power

0 10 1K CK(2) – Ceramic resonator, BOD enabled

0 11 1K CK(2) 4.1ms Ceramic resonator, fast rising power

1 00 1K CK(2) 65ms Ceramic resonator, slowly rising power

1 01 16K CK – Crystal Oscillator, BOD enabled

1 10 16K CK 4.1ms Crystal Oscillator, fast rising power

1 11 16K CK 65ms Crystal Oscillator, slowly rising power

Note: 
1. These options should only be used when not operating close to the maximum frequency of the

device, and only if frequency stability at start-up is not important for the application. These options
are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at
start-up. They can also be used with crystals when not operating close to the maximum frequency
of the device, and if frequency stability at start-up is not important for the application.

13.4. Low-frequency Crystal Oscillator
To use a 32.768kHz watch crystal as the clock source for the device, the Low-frequency Crystal Oscillator
must be selected by setting the CKSEL Fuses to “1001”. The crystal should be connected as shown in
Figure 13-2 Crystal Oscillator Connections on page 46. By programming the CKOPT Fuse, the user can
enable internal capacitors on XTAL1 and XTAL2, thereby removing the need for external capacitors. The
internal capacitors have a nominal value of 36pF.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in the table
below.

Table 13-5 Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1:0 Start-up Time from
Power-down and
Power-save

Additional Delay
from Reset
(VCC = 5.0V)

Recommended Usage

00 1K CK(1) 4.1ms Fast rising power or BOD enabled

01 1K CK(1) 65ms Slowly rising power

10 32K CK 65ms Stable frequency at start-up

11 Reserved

Note:  1. These options should only be used if frequency stability at start-up is not important for the
application.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

47

13.5. External RC Oscillator
For timing insensitive applications, the external RC configuration shown in the figure below can be used.
The frequency is roughly estimated by the equation f = 1/(3RC). C should be at least 22pF. By
programming the CKOPT Fuse, the user can enable an internal 36pF capacitor between XTAL1 and
GND, thereby removing the need for an external capacitor.

Figure 13-3 External RC Configuration

XTAL2

XTAL1

GND
C

R

VCC

NC

The Oscillator can operate in four different modes, each optimized for a specific frequency range. The
operating mode is selected by the fuses CKSEL3:0 as shown in the following table.

Table 13-6 External RC Oscillator Operating Modes

CKSEL3:0 Frequency Range (MHz)

0101 0.1 - 0.9

0110 0.9 - 3.0

0111 3.0 - 8.0

1000 8.0 - 12.0

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in the table
below.

Table 13-7 Start-up Times for the External RC Oscillator Clock Selection

SUT1:0 Start-up Time from
Power-down and
Power-save

Additional Delay
from Reset
(VCC = 5.0V)

Recommended Usage

00 18 CK – BOD enabled

01 18 CK 4.1ms Fast rising power

10 18 CK 65ms Slowly rising power

11 6 CK(1) 4.1ms Fast rising power or BOD enabled

Note:  1. This option should not be used when operating close to the maximum frequency of the device.

13.6. Calibrated Internal RC Oscillator
The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0MHz clock. All frequencies are
nominal values at 5V and 25°C. This clock may be selected as the system clock by programming the
CKSEL Fuses as shown in the next table. If selected, it will operate with no external components. The

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

48

22.11.5. TIMSK – Timer/Counter Interrupt Mask Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  TIMSK
Offset:  0x39
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x59

Bit 7 6 5 4 3 2 1 0
 OCIE2 TOIE2

Access R/W R/W
Reset 0 0

Bit 7 – OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable
When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match interrupt is enabled. The corresponding interrupt is executed if a Compare Match in
Timer/Counter2 occurs (i.e., when the OCF2 bit is set in the Timer/Counter Interrupt Flag Register –
TIFR).

Bit 6 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2
occurs (i.e., when the TOV2 bit is set in the Timer/Counter Interrupt Flag Register – TIFR).

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

167

Note:  1. See About Code Examples.

The following code examples show how to initialize the SPI as a Slave and how to
perform a simple reception.

Assembly Code Example(1)

SPI_SlaveInit:
 ; Set MISO output, all others input
 ldi r17,(1<<DD_MISO)
 out DDR_SPI,r17
 ; Enable SPI
 ldi r17,(1<<SPE)
 out SPCR,r17
 ret
SPI_SlaveReceive:
 ; Wait for reception complete
 sbis SPSR,SPIF
 rjmp SPI_SlaveReceive
 ; Read received data and return
 in r16,SPDR
 ret

C Code Example(1)

void SPI_SlaveInit(void)
{
 /* Set MISO output, all others input */
 DDR_SPI = (1<<DD_MISO);
 /* Enable SPI */
 SPCR = (1<<SPE);
}
char SPI_SlaveReceive(void)
{
 /* Wait for reception complete */
 while(!(SPSR & (1<<SPIF)))
 ;
 /* Return Data Register */
 return SPDR;
}

Note:  1. See About Code Examples.

Related Links
Pin Configurations on page 13
Alternate Functions of Port B on page 83
Alternate Port Functions on page 81
About Code Examples on page 23

23.3. SS Pin Functionality

23.3.1. Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is held low,
the SPI is activated, and MISO becomes an output if configured so by the user. All other pins are inputs.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

173

C Code Example(1)

#define FOSC 1843200 // Clock Speed
#define BAUD 9600
#define MYUBRR FOSC/16/BAUD-1
void main(void)
{
 ...
 USART_Init(MYUBRR)
 ...
}
void USART_Init(unsigned int ubrr)
{
 /*Set baud rate */
 UBRR0H = (unsigned char)(ubrr>>8);
 UBRR0L = (unsigned char)ubrr;
 Enable receiver and transmitter */
 UCSRB = (1<<RXEN)|(1<<TXEN);
 /* Set frame format: 8data, 2stop bit */
 UCSRC = (1<<URSEL)|(1<<USBS)|(3<<UCSZ0);
}

Note:  1. See About Code Examples.

More advanced initialization routines can be written to include frame format as
parameters, disable interrupts, and so on. However, many applications use a fixed setting
of the baud and control registers, and for these types of applications the initialization
code can be placed directly in the main routine, or be combined with initialization code for
other I/O modules.

Related Links
About Code Examples on page 23

24.6. Data Transmission – The USART Transmitter
The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB Register.
When the Transmitter is enabled, the normal port operation of the TxD pin is overridden by the USART
and given the function as the Transmitter’s serial output. The baud rate, mode of operation and frame
format must be set up once before doing any transmissions. If synchronous operation is used, the clock
on the XCK pin will be overridden and used as transmission clock.

24.6.1. Sending Frames with 5 to 8 Data Bits
A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU
can load the transmit buffer by writing to the UDR I/O location. The buffered data in the transmit buffer will
be moved to the Shift Register when the Shift Register is ready to send a new frame. The Shift Register is
loaded with new data if it is in idle state (no ongoing transmission) or immediately after the last stop bit of
the previous frame is transmitted. When the Shift Register is loaded with new data, it will transfer one
complete frame at the rate given by the Baud Register, U2X bit or by XCK depending on mode of
operation.

The following code examples show a simple USART transmit function based on polling of the Data
Register Empty (UDRE) Flag. When using frames with less than eight bits, the most significant bits
written to the UDR are ignored. The USART has to be initialized before the function can be used. For the
assembly code, the data to be sent is assumed to be stored in Register R16.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

187

Figure 25-10 Interfacing the Application to the TWI in a Typical Transmission

START SLA+W A Data A STOP

1. Application
writes to TWCR to

initiate
transmission of

START

2.TWINT set.
Status code indicates
START condition sent

4.TWINT set.
Status code indicates

SLA+W sent, ACK
received

6.TWINT set.
Status code indicates

data sent, ACK received

3. Check TWSR to see if START was
sent. Application loads SLA+W into

TWDR, and loads appropriate control
signals into TWCR, making sure that

TWINT is written to one,
and TWSTA is written to zero.

5. CheckTWSR to see if SLA+W was
sent and ACK received.

Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is

written to one

7. CheckTWSR to see if data was sent
and ACK received.

Application loads appropriate control
signals to send STOP into TWCR,

making sure that TWINT is written to one

TWI bus

Indicates
TWINT set

Ap
pl

ic
at

io
n

Ac
tio

n
TW

I
Ha

rd
w

ar
e

Ac
tio

n

1. The first step in a TWI transmission is to transmit a START condition. This is done by writing a
specific value into TWCR, instructing the TWI hardware to transmit a START condition. Which value
to write is described later on. However, it is important that the TWINT bit is set in the value written.
Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT
bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and TWSR is
updated with a status code indicating that the START condition has successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that the START
condition was successfully transmitted. If TWSR indicates otherwise, the application software might
take some special action, like calling an error routine. Assuming that the status code is as
expected, the application must load SLA+W into TWDR. Remember that TWDR is used both for
address and data. After TWDR has been loaded with the desired SLA+W, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the SLA+W present in TWDR. Which
value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the
TWINT bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is
updated with a status code indicating that the address packet has successfully been sent. The
status code will also reflect whether a Slave acknowledged the packet or not.

5. The application software should now examine the value of TWSR, to make sure that the address
packet was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR
indicates otherwise, the application software might take some special action, like calling an error
routine. Assuming that the status code is as expected, the application must load a data packet into
TWDR. Subsequently, a specific value must be written to TWCR, instructing the TWI hardware to
transmit the data packet present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is
updated with a status code indicating that the data packet has successfully been sent. The status
code will also reflect whether a Slave acknowledged the packet or not.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

219

Status
Code
(TWSR)

Prescaler
Bits are 0

Status of the 2-wire Serial
Bus and 2-wire Serial
Interface Hardware

Application Software Response Next Action Taken by TWI Hardware

To/from TWDR To TWCR

STA STO TWI
NT

TWE
A

0x98 Previously addressed with
general call; data has been

received; NOT ACK has been

returned

Read data byte or
Read data byte or

Read data byte or

Read data byte

0
0

1

1

0
0

0

0

1
1

1

1

0
1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus

becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free

0xA0 A STOP condition or repeated
START condition has been
received while still addressed
as Slave

No action 0
0

1

1

0
0

0

0

1
1

1

1

0
1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus

becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

230

Figure 25-17 Data Transfer in Slave Transmitter Mode

Device 3 Device n

SD A

SCL

........ R1 R2

VCC

Device 2
MASTER

RECEIVER

Device 1
SLA VE

TRANSMITTER

To initiate the SR mode, the TWI (Slave) Address Register (TWAR) and the TWI Control Register
(TWCR) must be initialized as follows:

The upper seven bits of TWAR are the address to which the 2-wire Serial Interface will respond when
addressed by a Master (TWAR.TWA[6:0]). If the LSB of TWAR is written to TWAR.TWGCI=1, the TWI will
respond to the general call address (0x00), otherwise it will ignore the general call address.

TWCR must hold a value of the type TWCR=0100010x - TWEN must be written to one to enable the TWI.
The TWEA bit must be written to one to enable the acknowledgement of the device’s own slave address
or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave
address (or the general call address if enabled) followed by the data direction bit. If the direction bit is “1”
(read), the TWI will operate in ST mode, otherwise SR mode is entered. After its own slave address and
the write bit have been received, the TWINT Flag is set and a valid status code can be read from TWSR.
The status code is used to determine the appropriate software action. The appropriate action to be taken
for each status code is detailed in the table below. The ST mode may also be entered if arbitration is lost
while the TWI is in the Master mode (see state 0xB0).

If the TWCR.TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the
transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver transmits a
NACK or ACK after the final byte. The TWI is switched to the not addressed Slave mode, and will ignore
the Master if it continues the transfer. Thus the Master Receiver receives all '1' as serial data. State 0xC8
is entered if the Master demands additional data bytes (by transmitting ACK), even though the Slave has
transmitted the last byte (TWEA zero and expecting NACK from the Master).

While TWCR.TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA. This
implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set,
the interface can still acknowledge its own slave address or the general call address by using the 2-wire
Serial Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL
clock will low during the wake up and until the TWINT Flag is cleared (by writing '1' to it). Further data
transmission will be carried out as normal, with the AVR clocks running as normal. Observe that if the
AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data
transmissions.

Note:  The 2-wire Serial Interface Data Register (TWDR) does not reflect the last byte present on the bus
when waking up from these Sleep modes.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

232

25.8.3. TWSR – TWI Status Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  TWSR
Offset:  0x01
Reset:  0xF8
Property:
 

When addressing I/O Registers as data space the offset address is 0x21

Bit 7 6 5 4 3 2 1 0
 TWS4 TWS3 TWS2 TWS1 TWS0 TWPS1 TWPS0

Access R R R R R R/W R/W
Reset 0 0 0 0 1 0 0

Bits 7:3 – TWSn: TWI Status Bit 7 [n = 7:3]
The TWS[7:3] reflect the status of the TWI logic and the 2-wire Serial Bus. The different status codes are
described later in this section. Note that the value read from TWSR contains both the 5-bit status value
and the 2-bit prescaler value. The application designer should mask the prescaler bits to zero when
checking the Status bits. This makes status checking independent of prescaler setting. This approach is
used in this datasheet, unless otherwise noted.

Bits 1:0 – TWPSn: TWI Prescaler [n = 1:0]
These bits can be read and written, and control the bit rate prescaler.

Table 25-8 TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

To calculate bit rates, refer to Bit Rate Generator Unit. The value of TWPS1:0 is used in the equation.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

240

25.8.4. TWDR – TWI Data Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains
the last byte received. It is writable while the TWI is not in the process of shifting a byte. This occurs when
the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initialized by
the user before the first interrupt occurs. The data in TWDR remains stable as long as TWINT is set.
While data is shifted out, data on the bus is simultaneously shifted in. TWDR always contains the last
byte present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In this case, the
contents of TWDR is undefined. In the case of a lost bus arbitration, no data is lost in the transition from
Master to Slave. Handling of the ACK bit is controlled automatically by the TWI logic, the CPU cannot
access the ACK bit directly.

Name:  TWDR
Offset:  0x03
Reset:  0xFF
Property:
 

When addressing I/O Registers as data space the offset address is 0x23

Bit 7 6 5 4 3 2 1 0
 TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 1

Bits 7:0 – TWDn: TWI Data [n = 7:0]
These eight bits constitute the next data byte to be transmitted, or the latest data byte received on the 2-
wire Serial Bus.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

241

28. Boot Loader Support – Read-While-Write Self-Programming

28.1. Features
• Read-While-Write Self-Programming
• Flexible Boot Memory Size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note:  1. A page is a section in the Flash consisting of several bytes (see Table. No. of Words in a Page
and No. of Pages in the Flash in Page Size) used during programming. The page organization does not
affect normal operation.

Related Links
Page Size on page 286

28.2. Overview
In this device, the Boot Loader Support provides a real Read-While-Write Self-Programming mechanism
for downloading and uploading program code by the MCU itself. This feature allows flexible application
software updates controlled by the MCU using a Flash-resident Boot Loader program. The Boot Loader
program can use any available data interface and associated protocol to read code and write (program)
that code into the Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the Boot Loader
memory. The Boot Loader can thus even modify itself, and it can also erase itself from the code if the
feature is not needed anymore. The size of the Boot Loader memory is configurable with fuses and the
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives the user
a unique flexibility to select different levels of protection.

28.3. Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot Loader
section. The size of the different sections is configured by the BOOTSZ Fuses. These two sections can
have different level of protection since they have different sets of Lock bits.

28.3.1. Application Section
The Application section is the section of the Flash that is used for storing the application code. The
protection level for the Application section can be selected by the application Boot Lock bits (Boot Lock
bits 0). The Application section can never store any Boot Loader code since the SPM instruction is
disabled when executed from the Application section.

28.3.2. BLS – Boot Loader Section
While the Application section is used for storing the application code, the The Boot Loader software must
be located in the BLS since the SPM instruction can initiate a programming when executing from the BLS
only. The SPM instruction can access the entire Flash, including the BLS itself. The protection level for
the Boot Loader section can be selected by the Boot Loader Lock bits (Boot Lock bits 1).

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

266

Figure 28-3 Addressing the Flash During SPM(1)

PROGRAM MEMORY

0115

Z - REGISTER

BIT

0

ZPAGEMSB

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

ZPCMSB

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE
PCMSB PAGEMSB

PROGRAM
COUNTER

Note: 
1. The different variables used in the figure are listed in Table 28-8 Explanation of Different Variables

used in Figure and the Mapping to the Z-pointer, ATmega8A on page 279.
2. PCPAGE and PCWORD are listed in table Number of Words in a Page and number of Pages in the

Flash in the Signal Names section.

28.8. Self-Programming the Flash
The program memory is updated in a page by page fashion. Before programming a page with the data
stored in the temporary page buffer, the page must be erased. The temporary page buffer is filled one
word at a time using SPM and the buffer can be filled either before the Page Erase command or between
a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase
• Fill temporary page buffer
• Perform a Page Erase
• Perform a Page Write

Alternative 2, fill the buffer after Page Erase
• Perform a Page Erase
• Fill temporary page buffer
• Perform a Page Write

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

272

High Fuse Byte Bit No. Description Default Value

BOOTSZ1 2 Select Boot Size
(see ATmega8A Boot Loader
Parameters)

0 (programmed)(3)

BOOTSZ0 1 Select Boot Size
(see ATmega8A Boot Loader
Parameters)

0 (programmed)(3)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Note: 
1. The SPIEN Fuse is not accessible in Serial Programming mode.
2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits, see Clock Sources for

details.
3. The default value of BOOTSZ1:0 results in maximum Boot Size. See Boot Loader Parameters for

details.
4. When programming the RSTDISBL Fuse Parallel Programming has to be used to change fuses or

perform further programming.

Table 29-4 Fuse Low Byte

Low Fuse Byte Bit No. Description Default Value

BODLEVEL 7 Brown out detector trigger level 1 (unprogrammed)

BODEN 6 Brown out detector enable 1 (unprogrammed, BOD disabled)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 0 (programmed)(2)

CKSEL0 0 Select Clock source 1 (unprogrammed)(2)

Note: 
1. The default value of SUT1:0 results in maximum start-up time. See table Start-up Times for the

Internal Calibrated RC Oscillator Clock Selection in Calibrated Internal RC Oscillator of the System
Clock and Clock Options chapter for details.

2. The default setting of CKSEL3:0 results in internal RC Oscillator @ 1MHz. See table Internal
Calibrated RC Oscillator Operating Modes in Calibrated Internal RC Oscillator of the System Clock
and Clock Options chapter for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if Lock bit1
(LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Related Links
Clock Sources on page 45
ATmega8A Boot Loader Parameters on page 278
Calibrated Internal RC Oscillator on page 48

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

285

Figure 29-3 Programming the Flash Waveform

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F

Note:  “XX” is don’t care. The letters refer to the programming description above.

29.7.5. Programming the EEPROM
The EEPROM is organized in pages, see Page Size on page 286, Table 29-7 Number of Words in a
Page and Number of Pages in the EEPROM on page 286. When programming the EEPROM, the
program data is latched into a page buffer. This allows one page of data to be programmed
simultaneously. The programming algorithm for the EEPROM data memory is as follows (For details on
Command, Address and Data loading, refer to Programming the Flash on page 289):

1. Step A: Load Command “0001 0001”.
2. Step G: Load Address High Byte (0x00 - 0xFF).
3. Step B: Load Address Low Byte (0x00 - 0xFF).
4. Step C: Load Data (0x00 - 0xFF).
5. Step E: Latch data (give PAGEL a positive pulse).
6. Step K:Repeat 3 through 5 until the entire buffer is filled.
7. Step L: Program EEPROM page

7.1. Set BS1 to “0”.
7.2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes

low.
7.3. Wait until to RDY/BSY goes high before programming the next page. Refer to the figure

below for signal waveforms.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

292

Figure 32-2 Active Supply Current vs. Frequency (1 - 16MHz)

ACTIVE SUPPLY CURRENT vs . FREQUENCY
1 - 16 MHZ

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

Frequency (MHz)

I C
C

(m
A

)
5.5 V

5.0 V

4.5 V

4.0 V

3.6 V
3.3 V

2.7 V

Figure 32-3 Active Supply Current vs. VCC (Internal RC Oscillator, 8MHz)

ACTIVE SUPPLY CURRENT vs . VCC
INTERNAL RC OSCILLATOR, 8 MHz

85 °C
25 °C

-40 °C

3

4

5

6

7

8

9

10

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

(m
A

)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

315

Figure 32-47 Bandgap Voltage vs. VCC

BANDGAP VOLTAGE vs . VCC

85 °C
25 °C

-40 °C

1.18

1.185

1.19

1.195

1.2

1.205

1.21

1.215

2.5 3 3.5 4 4.5 5 5.5

Vcc (V)

B
an

dg
ap

 V
ol

ta
ge

 (V
)

Figure 32-48 Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V)

C
om

pa
ra

to
r O

ffs
et

 V
ol

ta
ge

 (V
)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Common Mode Voltage (V)

ANALOG COMPARATOR OFFSET VOLTAGE vs . COMMON MODE VOLTAGE
VCC = 5V

85 °C
25 °C

-40 °C
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

338

Figure 33-41 Calibrated 4MHz RC Oscillator vs. VCC

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs . OPERATING
VOLTAGE

105 °C
85 °C

25 °C
-40 °C

3.6

3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

F R
C

(M
H

z)

Figure 33-42 Calibrated 4MHz RC Oscillator vs. OSCCAL Value

CALIBRATED 4MHz RC OSCILLATOR FREQUENCY vs . OSCCAL VALUE

105 °C
85 °C
25 °C

-40 °C

1

2

3

4

5

6

7

8

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

F R
C

(M
H

z)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

372

