
Microchip Technology - ATMEGA8A-AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-TQFP

Supplier Device Package 32-TQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega8a-aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8a-aur-4385391
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2. Configuration Summary
Features ATmega8A

Pin count 32

Flash (KB) 8

SRAM (KB) 1

EEPROM (Bytes) 512

General Purpose I/O pins 23

SPI 1

TWI (I2C) 1

USART 1

ADC 10-bit 15ksps

ADC channels 6 (8 in TQFP and QFN/MLF packages)

AC propagation delay Typ 400ns

8-bit Timer/Counters 2

16-bit Timer/Counters 1

PWM channels 3

RC Oscillator +/-3%

Operating voltage 2.7 - 5.5V

Max operating frequency 16MHz

Temperature range -40°C to +105°C

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

10

5.2. Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit
data bus. A 16-bit register must be byte accessed using two read or write operations. The 16-bit timer has
a single 8-bit register for temporary storing of the High byte of the 16-bit access. The same temporary
register is shared between all 16-bit registers within the 16-bit timer. Accessing the Low byte triggers the
16-bit read or write operation. When the Low byte of a 16-bit register is written by the CPU, the High byte
stored in the temporary register, and the Low byte written are both copied into the 16-bit register in the
same clock cycle. When the Low byte of a 16-bit register is read by the CPU, the High byte of the 16-bit
register is copied into the temporary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-bit
registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the Low byte
must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts
updates the temporary register. The same principle can be used directly for accessing the OCR1A/B and
ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Example(1)

 :.
; Set TCNT1 to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
 :.

C Code Example(1)

unsigned int i;
 :.
/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
 :.

Note:  1. See About Code Examples.

The assembly code example returns the TCNT1 value in the r17:r16 Register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs
between the two instructions accessing the 16-bit register, and the interrupt code updates the temporary
register by accessing the same or any other of the 16-bit Timer Registers, then the result of the access
outside the interrupt will be corrupted. Therefore, when both the main code and the interrupt code update
the temporary register, the main code must disable the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents. Reading
any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

17

Related Links
Boot Loader Support – Read-While-Write Self-Programming on page 266
Memory Programming on page 283
Instruction Execution Timing on page 30

12.3. SRAM Data Memory
The figure below shows how the Atmel AVR ATmega8A SRAM Memory is organized.

The lower 1120 Data memory locations address the Register File, the I/O Memory, and the internal data
SRAM. The first 96 locations address the Register File and I/O Memory, and the next 1024 locations
address the internal data SRAM.

The five different addressing modes for the Data memory cover: Direct, Indirect with Displacement,
Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26
to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the
Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the
address registers X, Y and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, and the 1024 bytes of internal data SRAM in
the ATmega8A are all accessible through all these addressing modes. The Register File is described in
General Purpose Register File.

Figure 12-2 Data Memory Map
Regis te r File

R0
R1
R2

R29
R30
R31

I/O Regis te rs
$00
$01
$02

...

$3D
$3E
$3F

...

$0000
$0001
$0002

$001D
$001E
$001F

$0020
$0021
$0022

...

$005D
$005E
$005F

...

Data Address Space

$0060
$0061

$045E
$045F

...

Inte rna l SRAM

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

34

Figure 15-3 Figure: MCU Start-up, RESET Extended Externally

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

Related Links
System and Reset Characteristics on page 305

15.2.2. External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum
pulse width (see table in System and Reset Characteristics) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage – VRST on its positive edge, the delay counter starts the MCU after the time-out
period tTOUT has expired.

Figure 15-4 External Reset During Operation
CC

Related Links
System and Reset Characteristics on page 305

15.2.3. Brown-out Detection
ATmega8A has an On-chip Brown-out Detection (BOD) circuit for monitoring the VCC level during
operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the fuse
BODLEVEL to be 2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger
level has a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detection level
should be interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled (BODEN
programmed), and VCC decreases to a value below the trigger level (VBOT- in the figure below), the
Brown-out Reset is immediately activated. When VCC increases above the trigger level (VBOT+ in the
figure below), the delay counter starts the MCU after the time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for longer than
tBOD given in the table in System and Reset Characteristics.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

59

Adddress Labels Code Comments
$004 out SPL,r16
$005 sei ; Enable

interrupts
$006 <instr> XXX
;
.org $c01
$c01 rjmp EXT_INT0 ; IRQ Handler
$c02 rjmp EXT_INT1 ; IRQ| Handler
:. :. :.
$c12 rjmp SPM_RDY ; Store Program

Memory Ready
Handler

When the BOOTRST Fuse is programmed and the boot section size set to 2K bytes, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments
.org $001
$001 rjmp EXT_INT0 ; IRQ0 Handler
$002 EXT_INT1 ; IRQ1 Handler
:. :. :. ;
$012 rjmp SPM_RDY ; Store Program

Memory Handler
;
.org $c00
$c00 rjmp RESET ; Reset handler
;
$c01 RESET: ldi r16,high(RAMEND) ; Main program

start
$c02 out SPH,r16 ; Set Stack

Pointer to top of
RAM

$c03 ldi r16,low(RAMENSPL,r
16D)

$c04 out SPL,r16
$c05 sei ; Enable

interrupts
$c06 <instr> XXX

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

69

17.1.3. GIFR – General Interrupt Flag Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  GIFR
Offset:  0x3A
Reset:  0
Property:
 

When addressing I/O Registers as data space the offset address is 0x5A

Bit 7 6 5 4 3 2 1 0
 INTF1 INTF0

Access R/W R/W
Reset 0 0

Bit 7 – INTF1: External Interrupt Flag 1
When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in
SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. This flag is always cleared when INT1 is configured as a level interrupt.

Bit 6 – INTF0: External Interrupt Flag 0
When an event on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in
SREG and the INT0 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. This flag is always cleared when INT0 is configured as a level interrupt.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

76

19.7.1. TCCR0 – Timer/Counter Control Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  TCCR0
Offset:  0x33
Reset:  0
Property:
 

When addressing I/O Registers as data space the offset address is 0x53

Bit 7 6 5 4 3 2 1 0
 CS02 CS01 CS00

Access R/W R/W R/W
Reset 0 0 0

Bits 2:0 – CS0n: Clock Select [n = 2:0]
The three clock select bits select the clock source to be used by the Timer/Counter.

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter
even if the pin is configured as an output. This feature allows software control of the counting.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

104

N represents the prescale divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the output will be a narrow
spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP will result in a constant high or
low output (depending on the polarity of the output set by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC1A
to toggle its logical level on each Compare Match (COM1A1:0 = 1). This applies only if OCR1A is used to
define the TOP value (WGM13:0 = 15). The waveform generated will have a maximum frequency of fOC1A
= fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is similar to the OC1A toggle in CTC mode,
except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode.

21.9.4. Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3, 10, or 11)
provides a high resolution phase correct PWM waveform generation option. The phase correct PWM
mode is, like the phase and frequency correct PWM mode, based on a dual-slope operation. The counter
counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting
Compare Output mode, the Output Compare (OC1x) is cleared on the Compare Match between TCNT1
and OCR1x while upcounting, and set on the Compare Match while downcounting. In inverting Output
Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation
frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM
modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the
maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated
by using the following equation:�PCPWM = log TOP+1log 2
In phase correct PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1 (WGM13:0 = 10), or
the value in OCR1A (WGM13:0 = 11). The counter has then reached the TOP and changes the count
direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram for the
phase correct PWM mode is shown in the figure below. The figure shows phase correct PWM mode when
OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs.
The small horizontal line marks on the TCNT1 slopes represent compare matches between OCR1x and
TCNT1. The OC1x Interrupt Flag will be set when a Compare Match occurs.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

126

small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2 and
TCNT2.

Figure 22-6 Fast PWM Mode, Timing Diagram

TCNTn

OCRn Update
and
TOVn Inte rrupt Flag Se t

1Period 2 3

OCn

OCn

(COMn1:0 = 2)

(COMn1:0 = 3)

OCRn Inte rrupt Flag Se t

4 5 6 7

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is
enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM21:0 to 3 (refer to Table 22-4 Compare Output Mode, Fast PWM Mode(1) on page 162).
The actual OC2 value will only be visible on the port pin if the data direction for the port pin is set as
output. The PWM waveform is generated by setting (or clearing) the OC2 Register at the Compare Match
between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer clock cycle the
counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:�OCnPWM = �clk_I/O� ⋅ 256
The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for
each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low
output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to
toggle its logical level on each Compare Match (COM21:0 = 1). The waveform generated will have a
maximum frequency of foc2 = fclk_I/O/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle
in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM
mode.

22.7.4. Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

154

Note:  1. See About Code Examples.

The following code examples show how to initialize the SPI as a Slave and how to
perform a simple reception.

Assembly Code Example(1)

SPI_SlaveInit:
 ; Set MISO output, all others input
 ldi r17,(1<<DD_MISO)
 out DDR_SPI,r17
 ; Enable SPI
 ldi r17,(1<<SPE)
 out SPCR,r17
 ret
SPI_SlaveReceive:
 ; Wait for reception complete
 sbis SPSR,SPIF
 rjmp SPI_SlaveReceive
 ; Read received data and return
 in r16,SPDR
 ret

C Code Example(1)

void SPI_SlaveInit(void)
{
 /* Set MISO output, all others input */
 DDR_SPI = (1<<DD_MISO);
 /* Enable SPI */
 SPCR = (1<<SPE);
}
char SPI_SlaveReceive(void)
{
 /* Wait for reception complete */
 while(!(SPSR & (1<<SPIF)))
 ;
 /* Return Data Register */
 return SPDR;
}

Note:  1. See About Code Examples.

Related Links
Pin Configurations on page 13
Alternate Functions of Port B on page 83
Alternate Port Functions on page 81
About Code Examples on page 23

23.3. SS Pin Functionality

23.3.1. Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is held low,
the SPI is activated, and MISO becomes an output if configured so by the user. All other pins are inputs.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

173

24.2.1. AVR USART vs. AVR UART – Compatibility
The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers.
• Baud Rate Generation.
• Transmitter Operation.
• Transmit Buffer Functionality.
• Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in some special
cases:

• A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO
buffer. Therefore the UDR must only be read once for each incoming data! More important is the
fact that the Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in
the receive buffer. Therefore the status bits must always be read before the UDR Register is read.
Otherwise the error status will be lost since the buffer state is lost.

• The Receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see Block Diagram in previous section) if the
Buffer Registers are full, until a new start bit is detected. The USART is therefore more resistant to
Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

• CHR9 is changed to UCSZ2.
• OR is changed to DOR.

24.3. Clock Generation
The clock generation logic generates the base clock for the Transmitter and Receiver. The USART
supports four modes of clock operation: normal asynchronous, double speed asynchronous, Master
synchronous and Slave Synchronous mode. The UMSEL bit in USART Control and Status Register C
(UCSRC) selects between asynchronous and synchronous operation. Double speed (Asynchronous
mode only) is controlled by the U2X found in the UCSRA Register. When using Synchronous mode
(UMSEL = 1), the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock source
is internal (Master mode) or external (Slave mode). The XCK pin is only active when using Synchronous
mode.

Below is a block diagram of the clock generation logic.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

182

Table 24-1 Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud
Rate(1)

Equation for Calculating UBRR
Value

Asynchronous Normal
mode (U2X = 0) BAUD = �OSC16 ���� + 1 ���� = �OSC16BAUD − 1
Asynchronous Double
Speed mode (U2X = 1) BAUD = �OSC8 ���� + 1 ���� = �OSC8BAUD − 1
Synchronous Master mode BAUD = �OSC2 ����+1 ���� = �OSC2BAUD − 1

Note:  1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps).

fOSC System oscillator clock frequency.

UBRR Contents of the UBRRH and UBRRL Registers, (0-4095).

Some examples of UBRR values for some system clock frequencies are found in Table 24-9 Examples of
UBRR Settings for Commonly Used Oscillator Frequencies on page 207.

24.3.2. Double Speed Operation (U2X)
The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the
asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer
rate for asynchronous communication. Note however that the Receiver will in this case only use half the
number of samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more
accurate baud rate setting and system clock are required when this mode is used.

For the Transmitter, there are no downsides.

24.3.3. External Clock
External clocking is used by the synchronous slave modes of operation. The description in this section
refers to Figure 24-2 Clock Generation Logic, Block Diagram on page 183.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of
meta-stability. The output from the synchronization register must then pass through an edge detector
before it can be used by the Transmitter and Receiver. This process introduces a two CPU clock period
delay and therefore the maximum external XCK clock frequency is limited by the following equation:�XCK < �OSC4
The value of fosc depends on the stability of the system clock source. It is therefore recommended to add
some margin to avoid possible loss of data due to frequency variations.

24.3.4. Synchronous Clock Operation
When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or
clock output (Master). The dependency between the clock edges and data sampling or data change is the
same. The basic principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the
edge the data output (TxD) is changed.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

184

Bit 1 – RXB8: Receive Data Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits.
Must be read before reading the low bits from UDR.

Bit 0 – TXB8: Transmit Data Bit 8
TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine
data bits. Must be written before writing the low bits to UDR.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

203

1. The transfer must be initiated.
2. The EEPROM must be instructed what location should be read.
3. The reading must be performed.
4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct the
Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data must be read
from the Slave, implying the use of the MR mode. Thus, the transfer direction must be changed. The
Master must keep control of the bus during all these steps, and the steps should be carried out as an
atomical operation. If this principle is violated in a multimaster system, another Master can alter the data
pointer in the EEPROM between steps 2 and 3, and the Master will read the wrong data location. Such a
change in transfer direction is accomplished by transmitting a REPEATED START between the
transmission of the address byte and reception of the data. After a REPEATED START, the Master keeps
ownership of the bus. The following figure shows the flow in this transfer.

Figure 25-19 Combining Several TWI Modes to Access a Serial EEPROM
Master Transmitter Master Receiv er

S = ST AR T Rs = REPEA TED ST AR T P = ST OP

Transmitted from master to sla v e Transmitted from sla v e to master

S SLA+W A ADDRESS A Rs SLA+R A DATA A P

25.7. Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one
or more of them. The TWI standard ensures that such situations are handled in such a way that one of
the masters will be allowed to proceed with the transfer, and that no data will be lost in the process. An
example of an arbitration situation is depicted below, where two masters are trying to transmit data to a
Slave Receiver.

Figure 25-20 An Arbitration Example

Device 1
MASTER

TRANSMITTER

Device 2
MASTER

TRANSMITTER

Device 3
SLA VE

RECEIVER
Device n

SD A

SCL

........ R1 R2

VCC

Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this case,
neither the Slave nor any of the masters will know about the bus contention.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

235

26.3.2. ACSR – Analog Comparator Control and Status Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  ACSR
Offset:  0x08
Reset:  N/A
Property:
 

When addressing I/O Registers as data space the offset address is 0x28

Bit 7 6 5 4 3 2 1 0
 ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

Access R/W R/W R R/W R/W R/W R/W R/W
Reset 0 0 a 0 0 0 0 0

Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit can be set
at any time to turn off the Analog Comparator. This will reduce power consumption in Active and Idle
mode. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the
ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.

Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog Comparator.
Refer to Internal Voltage Reference in System Control and Reset.

Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1
and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set and the I-bit in
SREG is set. ACI is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, ACI is cleared by writing a logic one to the flag.

Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Comparator
interrupt is activated. When written logic zero, the interrupt is disabled.

Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be triggered by
the Analog Comparator. The comparator output is in this case directly connected to the input capture
front-end logic, making the comparator utilize the noise canceler and edge select features of the Timer/
Counter1 Input Capture interrupt. When written logic zero, no connection between the Analog
Comparator and the input capture function exists. To make the comparator trigger the Timer/Counter1
Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

246

29.7.13. Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (Please refer to Programming the Flash on
page 289 for details on Command and Address loading):

1. Step A: Load Command “0000 1000”.
2. Step B: Load Address Low byte, (0x00 - 0x03).
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. Set OE to “1”.

29.7.14. Parallel Programming Characteristics
Figure 29-6 Parallel Programming Timing, Including some General Timing Requirements

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBXtBVWL

WLRL

Figure 29-7 Parallel Programming Timing, Loading Sequence with Timing Requirements(1)

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

Note:  1. The timing requirements shown in the first figure in this section (i.e., tDVXH, tXHXL, and tXLDX)
also apply to loading operation.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

295

30.6. SPI Timing Characteristics
See figures below for details.

Table 30-7 SPI Timing Parameters

Description Mode Min Typ Max

1 SCK period Master See Table 23-5 Relationship between SCK and
Oscillator Frequency on page 177

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 • tSCK

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 • tck

11 SCK high/low(1) Slave 2 • tck

12 Rise/Fall time Slave 1.6

13 Setup Slave 10

14 Hold Slave 10

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Salve 2 • tck

Note: 
1. In SPI Programming mode the minimum SCK high/low period is:
- 2tCLCL for fCK < 12MHz
- 3tCLCL for fCK > 12MHz

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

308

Figure 32-39 Reset Pin as I/O - Input Threshold Voltage vs. VCC (VIH, Reset Pin Read as “1”)

RESET PIN AS I/O - INPUT THRESHOLD VOLTAGE vs . VCC
VIH, RESET PIN READ AS '1'

85 °C

25 °C
-40 °C

0

0.5

1

1.5

2

2.5

3

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Th
re

sh
ol

d
(V

)

Figure 32-40 Reset Pin as I/O - Input Threshold Voltage vs. VCC (VIL, Reset Pin Read as “0”)

RESET PIN AS I/O - INPUT THRESHOLD VOLTAGE vs . VCC
VIL, RESET PIN READ AS '0'

85 °C
25 °C

-40 °C

0

0.5

1

1.5

2

2.5

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

Th
re

sh
ol

d
(V

)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

334

Figure 33-27 Reset Pin as I/O - Pin Hysteresis vs. VCC

RESET PIN AS IO, INPUT HYSTERESIS vs . VCC
VIL, IO PIN READ AS "0"

105 °C
85 °C
25 °C

-40 °C

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

In
pu

t H
ys

te
re

si
s

(m
V)

Figure 33-28 Reset Input Threshold vs. VCC (VIH , Reset Pin Read as ‘1’)

RESET INPUT THRESHOLD VOLTAGE vs . VCC
VIH, IO PIN READ AS '1'

105 °C
85 °C
25 °C

-40 °C

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

Th
re

sh
ol

d
(V

)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

365

– Register descriptions are moved to sub section at the end of each chapter.
– New graphics in Typical Characteristics – TA = -40°C to 85°C.
– New Ordering Information.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

393

