
Microchip Technology - ATMEGA8A-PU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 23

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-PDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atmega8a-pu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atmega8a-pu-4378811
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

5.2. Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit
data bus. A 16-bit register must be byte accessed using two read or write operations. The 16-bit timer has
a single 8-bit register for temporary storing of the High byte of the 16-bit access. The same temporary
register is shared between all 16-bit registers within the 16-bit timer. Accessing the Low byte triggers the
16-bit read or write operation. When the Low byte of a 16-bit register is written by the CPU, the High byte
stored in the temporary register, and the Low byte written are both copied into the 16-bit register in the
same clock cycle. When the Low byte of a 16-bit register is read by the CPU, the High byte of the 16-bit
register is copied into the temporary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCR1A/B 16-bit
registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the Low byte
must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts
updates the temporary register. The same principle can be used directly for accessing the OCR1A/B and
ICR1 Registers. Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Example(1)

 :.
; Set TCNT1 to 0x01FF
ldi r17,0x01
ldi r16,0xFF
out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
 :.

C Code Example(1)

unsigned int i;
 :.
/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
 :.

Note:  1. See About Code Examples.

The assembly code example returns the TCNT1 value in the r17:r16 Register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs
between the two instructions accessing the 16-bit register, and the interrupt code updates the temporary
register by accessing the same or any other of the 16-bit Timer Registers, then the result of the access
outside the interrupt will be corrupted. Therefore, when both the main code and the interrupt code update
the temporary register, the main code must disable the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents. Reading
any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

17

Figure 11-3 The X-, Y- and Z-Registers
15 XH XL 0

X-regis te r 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-regis te r 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-regis te r 7 0 7 0

R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

11.5. Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return
addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from
higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The
Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located.
A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the
Stack Pointer must be set to point above start of the SRAM, see Figure Data Memory Map in SRAM Data
Memory.

See table below for Stack Pointer details.

Table 11-1 Stack Pointer instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2 Return address is pushed onto the stack with a subroutine call or
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from subroutine or
return from interrupt

The Atmel AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits
actually used is implementation dependent. Note that the data space in some implementations of the AVR
architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

Related Links
SRAM Data Memory on page 34

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

29

17. External Interrupts
The external interrupts are triggered by the INT0, and INT1 pins. Observe that, if enabled, the interrupts
will trigger even if the INT0:1 pins are configured as outputs. This feature provides a way of generating a
software interrupt. The external interrupts can be triggered by a falling or rising edge or a low level. This is
set up as indicated in the specification for the MCU Control Register – MCUCR. When the external
interrupt is enabled and is configured as level triggered, the interrupt will trigger as long as the pin is held
low. Note that recognition of falling or rising edge interrupts on INT0 and INT1 requires the presence of an
I/O clock, described in Clock Systems and their Distribution. Low level interrupts on INT0/INT1 are
detected asynchronously. This implies that these interrupts can be used for waking the part also from
sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level
must be held for some time to wake up the MCU. This makes the MCU less sensitive to noise. The
changed level is sampled twice by the Watchdog Oscillator clock. The period of the Watchdog Oscillator
is 1μs (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscillator is voltage dependent as
shown in Electrical Characteristics – TA = -40°C to 85°C. The MCU will wake up if the input has the
required level during this sampling or if it is held until the end of the start-up time. The start-up time is
defined by the SUT Fuses as described in System Clock and Clock Options. If the level is sampled twice
by the Watchdog Oscillator clock but disappears before the end of the start-up time, the MCU will still
wake up, but no interrupt will be generated. The required level must be held long enough for the MCU to
complete the wake up to trigger the level interrupt.

Related Links
Clock Systems and their Distribution on page 44
Electrical Characteristics – TA = -40°C to 85°C on page 302
System Clock and Clock Options on page 44

17.1. Register Description

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

73

17.1.3. GIFR – General Interrupt Flag Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  GIFR
Offset:  0x3A
Reset:  0
Property:
 

When addressing I/O Registers as data space the offset address is 0x5A

Bit 7 6 5 4 3 2 1 0
 INTF1 INTF0

Access R/W R/W
Reset 0 0

Bit 7 – INTF1: External Interrupt Flag 1
When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in
SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. This flag is always cleared when INT1 is configured as a level interrupt.

Bit 6 – INTF0: External Interrupt Flag 0
When an event on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in
SREG and the INT0 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. This flag is always cleared when INT0 is configured as a level interrupt.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

76

18.4.7. PINC – The Port C Input Pins Address
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  PINC
Offset:  0x13
Reset:  N/A
Property:
 

When addressing I/O Registers as data space the offset address is 0x33

Bit 7 6 5 4 3 2 1 0
 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

Access R R R R R R R
Reset x x x x x x x

Bits 6:0 – PINCn: Port C Input Pins Address [n = 6:0]

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

97

19.5. Operation
The counting direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (MAX = 0xFF) and then restarts from the bottom (0x00).
In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same timer clock cycle as
the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth bit, except that it is only set,
not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV0 Flag,
the timer resolution can be increased by software. A new counter value can be written anytime.

19.6. Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock
enable signal in the following figures. The figures include information on when Interrupt Flags are set. The
following figure contains timing data for basic Timer/Counter operation. The figure shows the count
sequence close to the MAX value.

Figure 19-3 Timer/Counter Timing Diagram, No Prescaling

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

The next figure shows the same timing data, but with the prescaler enabled.

Figure 19-4 Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8)

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

19.7. Register Description

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

103

19.7.3. TIMSK – Timer/Counter Interrupt Mask Register
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  TIMSK
Offset:  0x39
Reset:  0
Property:
 

When addressing I/O Registers as data space the offset address is 0x59

Bit 7 6 5 4 3 2 1 0
 TOIE0

Access R/W
Reset 0

Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable.
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0
occurs, i.e., when the TOV0 bit is set in the Timer/Counter Interrupt Flag Register – TIFR.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

106

21.11.3. TCNT1L – Timer/Counter1 Low byte
When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses. The device is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space
from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Name:  TCNT1L
Offset:  0x2C
Reset:  0x00
Property:
 

When addressing I/O Registers as data space the offset address is 0x4C

Bit 7 6 5 4 3 2 1 0
 TCNT1L[7:0]

Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 – TCNT1L[7:0]: Timer/Counter 1 Low byte
The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both
for read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high
and low bytes are read and written simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. Refer to Accessing 16-bit Registers for details.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match
between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all
compare units.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

137

25.2.1. SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-
rate limiter in order to conform to the TWI specification. The input stages contain a spike suppression unit
removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR pads can be enabled by
setting the PORT bits corresponding to the SCL and SDA pins, as explained in the I/O Port section. The
internal pull-ups can in some systems eliminate the need for external ones.

25.2.2. Bit Rate Generator Unit
This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by
settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR).
Slave operation does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the
Slave must be at least 16 times higher than the SCL frequency. Note that slaves may prolong the SCL
low period, thereby reducing the average TWI bus clock period.

The SCL frequency is generated according to the following equation:SCL frequency = CPU Clock frequency16 + 2(TWBR) ⋅ PrescalerValue
• TWBR = Value of the TWI Bit Rate Register
• PrescalerValue = Value of the prescaler, see description of the TWI Prescaler bit in the TWSR

Status Register description (TWSR.TWPS)

Note:  Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See the Two-Wire Serial Interface Characteristics for a suitable value of the pull-up resistor.

Related Links
Two-wire Serial Interface Characteristics on page 306

25.2.3. Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted, or the
address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also contains a
register containing the (N)ACK bit to be transmitted or received. This (N)ACK Register is not directly
accessible by the application software. However, when receiving, it can be set or cleared by manipulating
the TWI Control Register (TWCR). When in Transmitter mode, the value of the received (N)ACK bit can
be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START,
and STOP conditions. The START/STOP controller is able to detect START and STOP conditions even
when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continuously
monitors the transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration,
the Control Unit is informed. Correct action can then be taken and appropriate status codes generated.

25.2.4. Address Match Unit
The Address Match unit checks if received address bytes match the seven-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the TWAR is
written to one, all incoming address bits will also be compared against the General Call address. Upon an
address match, the Control Unit is informed, allowing correct action to be taken. The TWI may or may not
acknowledge its address, depending on settings in the TWCR. The Address Match unit is able to
compare addresses even when the AVR MCU is in sleep mode, enabling the MCU to wake up if
addressed by a Master. If another interrupt (e.g., INT0) occurs during TWI Power-down address match

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

212

7. The application software should now examine the value of TWSR, to make sure that the data
packet was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR
indicates otherwise, the application software might take some special action, like calling an error
routine. Assuming that the status code is as expected, the application must write a specific value to
TWCR, instructing the TWI hardware to transmit a STOP condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a
one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can
be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT Flag is set.
The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for the
next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted in the
next bus cycle.

• After all TWI Register updates and other pending application software tasks have been completed,
TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears
the flag. The TWI will then commence executing whatever operation was specified by the TWCR
setting.

The following table lists assembly and C implementation examples. Note that the code below assumes
that several definitions have been made, e.g. by using include-files.

Table 25-2 Assembly and C Code Example

Assembly Code Example C Example Comments

1
ldi r16, (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
out TWCR, r16

TWCR = (1<<TWINT)|
(1<<TWSTA)|(1<<TWEN) Send START condition

2
wait1:

in r16,TWCR
sbrs r16,TWINT
rjmp wait1

while (!(TWCR &
(1<<TWINT)));

Wait for TWINT Flag set. This indicates

that the START condition has been

transmitted.

3

in r16,TWSR
andi r16, 0xF8
cpi r16, START

brne ERROR

if ((TWSR & 0xF8) !=
START)

 ERROR();

Check value of TWI Status Register.

Mask prescaler bits. If status different

from START go to ERROR.

ldi r16, SLA_W
out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)
out TWCR, r16

TWDR = SLA_W;
TWCR = (1<<TWINT) |

(1<<TWEN);

Load SLA_W into TWDR Register. Clear

TWINT bit in TWCR to start transmission

of address.

4
wait2:

in r16,TWCR
sbrs r16,TWINT

rjmp wait2

while (!(TWCR &
(1<<TWINT)));

Wait for TWINT Flag set. This indicates

that the SLA+W has been transmitted,

and ACK/NACK has been received.

5

in r16,TWSR
andi r16, 0xF8

cpi r16, MT_SLA_ACK
brne ERROR

if ((TWSR & 0xF8) !=
MT_SLA_ACK)
 ERROR();

Check value of TWI Status Register.

Mask prescaler bits. If status different

from MT_SLA_ACK go to ERROR.

ldi r16, DATA
out TWDR, r16

ldi r16, (1<<TWINT) | (1<<TWEN)
out TWCR, r16

TWDR = DATA;
TWCR = (1<<TWINT) |

(1<<TWEN);

Load DATA into TWDR Register. Clear

TWINT bit in TWCR to start transmission

of data.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

220

Bit 4 – TWSTO: TWI STOP Condition
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire Serial Bus.
When the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In Slave
mode, setting the TWSTO bit can be used to recover from an error condition. This will not generate a
STOP condition, but the TWI returns to a well-defined unaddressed Slave mode and releases the SCL
and SDA lines to a high impedance state.

Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT is low.
This flag is cleared by writing the TWDR Register when TWINT is high.

Bit 2 – TWEN: TWI Enable
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the
TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the slew-rate limiters
and spike filters. If this bit is written to zero, the TWI is switched off and all TWI transmissions are
terminated, regardless of any ongoing operation.

Bit 0 – TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for
as long as the TWINT Flag is high.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

239

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By
default, the result is presented right adjusted, but can optionally be presented left adjusted by setting the
ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH.
Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data Registers belongs
to the same conversion. Once ADCL is read, ADC access to Data Registers is blocked. This means that if
ADCL has been read, and a conversion completes before ADCH is read, neither register is updated and
the result from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL
Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access
to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if
the result is lost.

27.3. Starting a Conversion
A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit
stays high as long as the conversion is in progress and will be cleared by hardware when the conversion
is completed. If a different data channel is selected while a conversion is in progress, the ADC will finish
the current conversion before performing the channel change.

In Free Running mode, the ADC is constantly sampling and updating the ADC Data Register. Free
Running mode is selected by writing the ADFR bit in ADCSRA to one. The first conversion must be
started by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

27.4. Prescaling and Conversion Timing
Figure 27-2 ADC Prescaler

7-BIT ADC PRESCALER

ADC CLOCK SOURCE

CK

ADPS0
ADPS1
ADPS2

CK
/1

28

CK
/2

CK
/4

CK
/8

CK
/1

6

CK
/3

2

CK
/6

4

Reset
ADEN
START

By default, the successive approximation circuitry requires an input clock frequency between 50kHz and
200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency
to the ADC can be higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any
CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts
counting from the moment the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler
keeps running for as long as the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at
the following rising edge of the ADC clock cycle. A normal conversion takes 13 ADC clock cycles. The

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

250

28.4. Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader software
update is dependent on which address that is being programmed. In addition to the two sections that are
configurable by the BOOTSZ Fuses as described above, the Flash is also divided into two fixed sections,
the Read-While-Write (RWW) section and the No Read-While-Write (NRWW) section. The limit between
the RWW- and NRWW sections is given in the Boot Loader Parameters section and Figure 28-2 Memory
Sections on page 269. The main difference between the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be read
during the operation

• When erasing or writing a page located inside the NRWW section, the CPU is halted during the
entire operation

The user software can never read any code that is located inside the RWW section during a Boot Loader
software operation. The syntax “Read-While-Write section” refers to which section that is being
programmed (erased or written), not which section that actually is being read during a Boot Loader
software update.

Related Links
ATmega8A Boot Loader Parameters on page 278

28.4.1. RWW – Read-While-Write Section
If a Boot Loader software update is programming a page inside the RWW section, it is possible to read
code from the Flash, but only code that is located in the NRWW section. During an on-going
programming, the software must ensure that the RWW section never is being read. If the user software is
trying to read code that is located inside the RWW section (i.e. by a call/rjmp/lpm or an interrupt) during
programming, the software might end up in an unknown state. To avoid this, the interrupts should either
be disabled or moved to the Boot Loader section. The Boot Loader section is always located in the
NRWW section. The RWW Section Busy bit (RWWSB) in the Store Program Memory Control Register
(SPMCR) will be read as logical one as long as the RWW section is blocked for reading. After a
programming is completed, the RWWSB must be cleared by software before reading code located in the
RWW section. Please refer to SPMCR – Store Program Memory Control Register in this chapter for
details on how to clear RWWSB.

28.4.2. NRWW – No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updating a page in
the RWW section. When the Boot Loader code updates the NRWW section, the CPU is halted during the
entire Page Erase or Page Write operation.

Table 28-1 Read-While-Write Features

Which Section does the Z-
pointer Address during the
Programming?

Which Section can be read
during Programming?

CPU Halted? Read-While-Write
Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

267

Note:  1.
Z15:Z13: always ignored.

Z0: should be zero for all SPM commands, byte select for the LPM instruction.

See Addressing the Flash During Self-Programming for details about the use of Z-pointer during Self-
Programming.

28.9. Register Description

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

280

Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles
executes Page Write, with the data stored in the temporary buffer. The page address is taken from the
high part of the Zpointer. The data in R1 and R0 are ignored. The PGWRT bit will auto-clear upon
completion of a Page Write, or if no SPM instruction is executed within four clock cycles. The CPU is
halted during the entire Page Write operation if the NRWW section is addressed.

Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles
executes Page Erase. The page address is taken from the high part of the Z-pointer. The data in R1 and
R0 are ignored. The PGERS bit will auto-clear upon completion of a Page Erase, or if no SPM instruction
is executed within four clock cycles. The CPU is halted during the entire Page Write operation if the
NRWW section is addressed.

Bit 0 – SPMEN: Store Program Memory
This bit enables the SPM instruction for the next four clock cycles. If written to one together with either
RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a special meaning, see
description above. If only SPMEN is written, the following SPM instruction will store the value in R1:R0 in
the temporary page buffer addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN
bit will auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed within four
clock cycles. During Page Erase and Page Write, the SPMEN bit remains high until the operation is
completed.
Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will
have no effect.

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

282

Figure 29-8 Parallel Programming Timing, Reading Sequence (within the same Page) with Timing
Requirements(1)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

READ DATA
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
(LOW BYTE)

tBVDV

tOLDV

tXLOL

tOHDZ

Note:  1. The timing requirements shown in the first figure in this section (i.e., tDVXH, tXHXL, and tXLDX)
also apply to reading operation.

Table 29-12 Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 μA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 μs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

296

Figure 32-6 Active Supply Current vs. VCC (Internal RC Oscillator, 1MHz)

ACTIVE SUPPLY CURRENT vs . VCC
INTERNAL RC OSCILLATOR, 1 MHz

85 °C
25 °C

-40 °C

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

(m
A

)

Figure 32-7 Active Supply Current vs. VCC (32kHz External Oscillator)

ACTIVE SUPPLY CURRENT vs . VCC
EXTERNAL OSCILLATOR, 32 kHz

25 °C

40

45

50

55

60

65

70

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

I C
C

(µ
A

)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

317

Figure 32-57 Calibrated 2MHz RC Oscillator Frequency vs. Temperature

CALIBRATED 2 MHz RC OSCILLATOR FREQUENCY vs . TEMPERATURE

5.5 V

4.0 V

2.7 V

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

-40 -20 0 20 40 60 80 100

F R
C

(M
H

z)

Tempera ture (°C)

Figure 32-58 Calibrated 2MHz RC Oscillator Frequency vs. VCC

CALIBRATED 2 MHz RC OSCILLATOR FREQUENCY vs . VCC

85 °C

25 °C
-40 °C

1.8

1.85

1.9

1.95

2

2.05

2.1

2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F R
C

(M
H

z)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

343

Figure 33-8 Idle Supply Current vs. VCC (Internal RC Oscillator, 2MHz)

IDLE SUPPLY CURRENT vs . VCC
INTERNAL RC OSCILLATOR, 2 MHz

105 °C
85 °C
25 °C

-40 °C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

I C
C

(m
A)

Figure 33-9 Idle Supply Current vs. VCC (Internal RC Oscillator, 1MHz)

IDLE SUPPLY CURRENT vs . VCC
INTERNAL RC OSCILLATOR, 1 MHz

105 °C
85 °C
25 °C

-40 °C

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

I C
C

(m
A)

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

355

Figure 33-51 Watchdog Timer Current vs. VCC

WATCHDOG TIMER CURRENT vs . VCC

4

6

8

10

12

14

16

18

20

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

I C
C

(u
A

)

105 °C
85 °C

25 °C
-40 °C

Figure 33-52 Analog Comparator Current vs. VCC

ANALOG COMPARATOR CURRENT vs . VCC

32

36

40

44

48

52

56

60

64

68

72

2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 5.2 5.5

VCC (V)

I C
C

(m
A)

105 °C

85 °C

25 °C

-40 °C

Atmel ATmega8A [DATASHEET]
Atmel-8159F-8-bit AVR Microcontroller_Datasheet_Complete-09/2015

377

