

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable (min 10K program/erase cycles)
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	2
Number of Macrocells	36
Number of Gates	800
Number of I/O	34
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc9536xl-10pc44c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DS058 (v1.9) April 3, 2007

XC9536XL High Performance CPLD

Product Specification

54V18 Function Blocks, providing 800 usable gates with propagation delays of 5 ns. See Figure 2 for architecture overview.

Power Estimation

Power dissipation in CPLDs can vary substantially depending on the system frequency, design application and output loading. To help reduce power dissipation, each macrocell in a XC9500XL device may be configured for low-power mode (from the default high-performance mode). In addition, unused product-terms and macrocells are automatically deactivated by the software to further conserve power. For a general estimate of $I_{\rm CC}$, the following equation may be used:

$$\begin{split} I_{CC}(mA) &= MC_{HS}(0.175^*PT_{HS} + 0.345) + MC_{LP}(0.052^*PT_{LP} \\ &+ 0.272) + 0.04 * MC_{TOG}(MC_{HS} + MC_{LP})^* \, f \end{split}$$

where

MC_{HS} = # macrocells in high-speed configuration PT_{HS} = average number of high-speed product terms per macrocell

 ${
m MC_{LP}}$ = # macrocells in low power configuration ${
m PT_{LP}}$ = average number of low power product terms per macrocell

f = maximum clock frequency MCTOG = average % of flip-flops toggling per clock (~12%)

This calculation was derived from laboratory measurements of an XC9500XL part filled with 16-bit counters and allowing a single output (the LSB) to be enabled. The actual $I_{\rm CC}$ value varies with the design application and should be verified during normal system operation. Figure 1 shows the above estimation in a graphical form. For a more detailed discussion of power consumption in this device, see Xilinx

Features

- 5 ns pin-to-pin logic delays
- System frequency up to 178 MHz
- · 36 macrocells with 800 usable gates
- Available in small footprint packages
 - 44-pin PLCC (34 user I/O pins)
 - 44-pin VQFP (34 user I/O pins)
 - 48-pin CSP (36 user I/O pins)
 - 64-pin VQFP (36 user I/O pins)
 - Pb-free available for all packages
- Optimized for high-performance 3.3V systems
 - Low power operation
 - 5V tolerant I/O pins accept 5 V, 3.3V, and 2.5V signals
 - 3.3V or 2.5V output capability
 - Advanced 0.35 micron feature size CMOS Fast FLASH™ technology
- Advanced system features
 - In-system programmable
 - Superior pin-locking and routability with Fast CONNECT™ II switch matrix
 - Extra wide 54-input Function Blocks
 - Up to 90 product-terms per macrocell with individual product-term allocation
 - Local clock inversion with three global and one product-term clocks
 - Individual output enable per output pin
 - Input hysteresis on all user and boundary-scan pin inputs
 - Bus-hold circuitry on all user pin inputs
 - Full IEEE Standard 1149.1 boundary-scan (JTAG)
- · Fast concurrent programming
- Slew rate control on individual outputs
- Enhanced data security features
- Excellent quality and reliability
 - Endurance exceeding 10,000 program/erase cycles
 - 20 year data retention
 - ESD protection exceeding 2,000V
- Pin-compatible with 5V-core XC9536 device in the 44-pin PLCC package and the 48-pin CSP package

WARNING: Programming temperature range of $T_A = 0^{\circ}$ C to +70° C

Description

The XC9536XL is a 3.3V CPLD targeted for high-performance, low-voltage applications in leading-edge communications and computing systems. It is comprised of two

application note XAPP114, "Understanding XC9500XL CPLD Power."

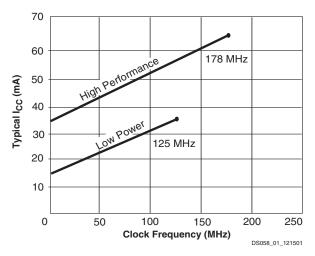


Figure 1: Typical I_{CC} vs. Frequency for XC9536XL

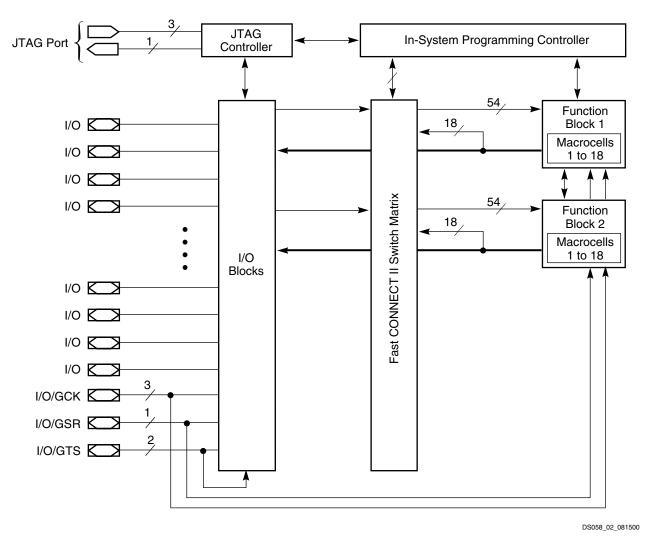


Figure 2: XC9536XL Architecture
Function Block outputs (indicated by the bold line) drive the I/O Blocks directly.

DS058 (v1.9) April 3, 2007 Product Specification

Absolute Maximum Ratings(2)

Symbol	Description	Value	Units
V _{CC}	Supply voltage relative to GND	-0.5 to 4.0	V
V _{IN}	Input voltage relative to GND ⁽¹⁾	-0.5 to 5.5	V
V _{TS}	Voltage applied to 3-state output ⁽¹⁾	-0.5 to 5.5	V
T _{STG}	Storage temperature (ambient) ⁽³⁾	-65 to +150	°C
T _J	Junction temperature	+150	°C

Notes:

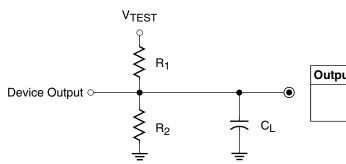
- Maximum DC undershoot below GND must be limited to either 0.5V or 10 mA, whichever is easier to achieve. During transitions, the
 device pins may undershoot to -2.0 V or overshoot to +7.0V, provided this over- or undershoot lasts less than 10 ns and with the
 forcing current being limited to 200 mA. External I/O voltage may not exceed V_{CCINT} by 4.0V.
- 2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
- 3. For soldering guidelines and thermal considerations, see the <u>Device Packaging</u> information on the Xilinx website. For Pb-free packages, see <u>XAPP427</u>.

Recommended Operation Conditions

Symbol	Paran	neter	Min	Max	Units
V _{CCINT}	Supply voltage for internal logic	- /		3.6	V
	and input buffers	Industrial $T_A = -40^{\circ}\text{C}$ to +85°C	3.0	3.6	V
V _{CCIO}	Supply voltage for output drivers for	upply voltage for output drivers for 3.3V operation			
	Supply voltage for output drivers for	or 2.5V operation	2.3	2.7	V
V _{IL}	Low-level input voltage		0	0.80	V
V _{IH}	High-level input voltage		2.0	5.5	V
V _O	Output voltage		0	V _{CCIO}	V

Quality and Reliability Characteristics

Symbol	Parameter	Min	Max	Units
T _{DR}	Data Retention	20	-	Years
N _{PE}	Program/Erase Cycles (Endurance)	10,000	-	Cycles
V _{ESD}	Electrostatic Discharge (ESD)	2,000	-	Volts


DC Characteristic Over Recommended Operating Conditions

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{OH}	Output high voltage for 3.3V outputs	I _{OH} = -4.0 mA	2.4	-	V
	Output high voltage for 2.5V outputs	I _{OH} = -500 μA	90% V _{CCIO}	-	V
V _{OL}	Output low voltage for 3.3V outputs	I _{OL} = 8.0 mA	-	0.4	V
	Output low voltage for 2.5V outputs	I _{OL} = 500 μA	-	0.4	V
I _{IL}	Input leakage current	V_{CC} = Max; V_{IN} = GND or V_{CC}	-	±10	μΑ
I _{IH}	I/O high-Z leakage current	V_{CC} = Max; V_{IN} = GND or V_{CC}	-	±10	μΑ
I _{IH}	I/O high-Z leakage current	V_{CC} = Max; V_{CCIO} = Max; V_{IN} = GND or 3.6V	-	±10	μА
		V _{CC} Min < V _{IN} < 5.5V	-	±50	μΑ
C _{IN}	I/O capacitance	V _{IN} = GND; f = 1.0 MHz	-	10	pF
I _{CC}	Operating supply current (low power mode, active)	V _{IN} = GND, No load; f = 1.0 MHz	10 (Typic	al)	mA

AC Characteristics

		XC95	36XL-5	XC953	86XL-7	XC953	6XL-10	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
T _{PD}	I/O to output valid	-	5.0	-	7.5	-	10.0	ns
T _{SU}	I/O setup time before GCK	3.7	-	4.8	-	6.5	-	ns
T _H	I/O hold time after GCK	0	-	0	-	0	-	ns
T _{CO}	GCK to output valid	-	3.5	-	4.5	-	5.8	ns
f _{SYSTEM}	Multiple FB internal operating frequency	-	178.6	-	125	-	100	MHz
T _{PSU}	I/O setup time before p-term clock input	1.7	-	1.6	-	2.1	-	ns
T _{PH}	I/O hold time after p-term clock input	2.0	-	3.2	-	4.4	-	ns
T _{PCO}	P-term clock output valid	-	5.5	-	7.7	-	10.2	ns
T _{OE}	GTS to output valid	-	4.0	-	5.0	-	7.0	ns
T _{OD}	GTS to output disable	-	4.0	-	5.0	-	7.0	ns
T _{POE}	Product term OE to output enabled	-	7.0	-	9.5	-	11.0	ns
T _{POD}	Product term OE to output disabled	-	7.0	-	9.5	-	11.0	ns
T _{AO}	GSR to output valid	-	10.0	-	12.0	-	14.5	ns
T _{PAO}	P-term S/R to output valid	-	10.5	-	12.6	-	15.3	ns
T _{WLH}	GCK pulse width (High or Low)	2.8	-	4.0	-	4.5	-	ns
T _{APRPW}	Asynchronous preset/reset pulse width (High or Low)	5.0	-	6.5	-	7.0	-	ns
T _{PLH}	P-term clock pulse width (High or Low)	5.0	-	6.5	-	7.0	-	ns

Output Type	V _{CCIO}	V _{TEST}	R ₁	R_2	CL
	3.3V	3.3V	320 Ω	360 Ω	35 pF
	2.5V	2.5V	250 Ω	660 Ω	35 pF

DS058_03_081500

Figure 3: AC Load Circuit

Internal Timing Parameters

		XC95	36XL-5	XC95	36XL-7	XC9536XL-10		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
Buffer D	elays	·	,			,		
T _{IN}	Input buffer delay	-	1.5	-	2.3	-	3.5	ns
T _{GCK}	GCK buffer delay	-	1.1	-	1.5	-	1.8	ns
T_{GSR}	GSR buffer delay	-	2.0	-	3.1	-	4.5	ns
T _{GTS}	GTS buffer delay	-	4.0	-	5.0	-	7.0	ns
T _{OUT}	Output buffer delay	-	2.0	-	2.5	-	3.0	ns
T _{EN}	Output buffer enable/disable delay	-	0	-	0	-	0	ns
Product	Term Control Delays			1	1	1	1	
T _{PTCK}	Product term clock delay	-	1.6	-	2.4	-	2.7	ns
T _{PTSR}	Product term set/reset delay	-	1.0	-	1.4	-	1.8	ns
T _{PTTS}	Product term 3-state delay	-	5.5	-	7.2	-	7.5	ns
Internal	Register and Combinatorial Delays	"	1	l		1		
T _{PDI}	Combinatorial logic propagation delay	-	0.5	-	1.3	-	1.7	ns
T _{SUI}	Register setup time	2.3	-	2.6	-	3.0	-	ns
T _{HI}	Register hold time	1.4	-	2.2	-	3.5	-	ns
T _{ECSU}	Register clock enable setup time	2.3	-	2.6	-	3.0	-	ns
T _{ECHO}	Register clock enable hold time	1.4	-	2.2	-	3.5	-	ns
T _{COI}	Register clock to output valid time	-	0.4	-	0.5	-	1.0	ns
T _{AOI}	Register async. S/R to output delay	-	6.0	-	6.4	-	7.0	ns
T _{RAI}	Register async. S/R recover before clock	5.0		7.5		10.0		ns
T_{LOGI}	Internal logic delay	-	1.0	-	1.4	-	1.8	ns
T _{LOGILP}	Internal low power logic delay	-	5.0	-	6.4	-	7.3	ns
Feedbac	k Delays		1	1	1	1	1	!
T _F	Fast CONNECT II feedback delay	-	1.9	-	3.5	-	4.2	ns
Time Ad	ders	"	1	1		1		
T _{PTA}	Incremental product term allocator delay	-	0.7	-	8.0	-	1.0	ns
T _{SLEW}	Slew-rate limited delay	-	3.0	-	4.0	-	4.5	ns

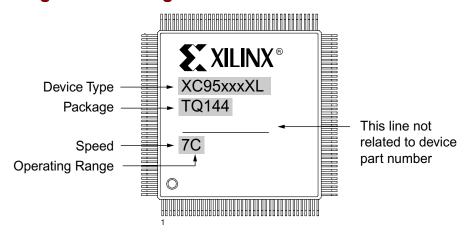
XC9536XL I/O Pins(2)

Function Block	Macro- cell	PC44	VQ44	CS48	VQ64	BScan Order	Function Block	Macro- cell	PC44	VQ44	CS48	VQ64	BScan Order
1	1	2	40	D6	9	105	2	1	1	39	D7	8	51
1	2	3	41	C7	10	102	2	2	44	38	E5	7	48
1	3	5 ⁽¹⁾	43 ⁽¹⁾	B7 ⁽¹⁾	15 ⁽¹⁾	99	2	3	42 ⁽¹⁾	36 ⁽¹⁾	E6 ⁽¹⁾	5 ⁽¹⁾	45
1	4	4	42	C6	11	96	2	4	43	37	E7	6	42
1	5	6 ⁽¹⁾	44 ⁽¹⁾	B6 ⁽¹⁾	16 ⁽¹⁾	93	2	5	40 ⁽¹⁾	34 ⁽¹⁾	F6 ⁽¹⁾	2 ⁽¹⁾	39
1	6	8	2	A6	19	90	2	6	39(1)	33 ⁽¹⁾	G7 ⁽¹⁾	64 ⁽¹⁾	36
1	7	7 ⁽¹⁾	1 ⁽¹⁾	A7 ⁽¹⁾	17 ⁽¹⁾	87	2	7	38	32	G6	63	33
1	8	9	3	C5	20	84	2	8	37	31	F5	62	30
1	9	11	5	B5	22	81	2	9	36	30	G5	61	27
1	10	12	6	A4	24	78	2	10	35	29	F4	60	24
1	11	13	7	B4	25	75	2	11	34	28	G4	57	21
1	12	14	8	А3	27	72	2	12	33	27	E3	56	18
1	13	18	12	B2	33	69	2	13	29	23	F2	50	15
1	14	19	13	B1	35	66	2	14	28	22	G1	48	12
1	15	20	14	C2	36	63	2	15	27	21	F1	45	9
1	16	22	16	C3	38	60	2	16	26	20	E2	44	6
1	17	24	18	D2	42	57	2	17	25	19	E1	43	3
1	18	-	-	D3	39	54	2	18	-	-	E4	49	0

Notes:

- 1. Global control pin.
- 2. The pin-outs are the same for Pb-free versions of packages.

XC9536XL Global, JTAG and Power Pins⁽¹⁾


Pin Type	PC44	VQ44	CS48	VQ64
I/O/GCK1	5	43	B7	15
I/O/GCK2	6	44	B6	16
I/O/GCK3	7	1	A7	17
I/O/GTS1	42	36	E6	5
I/O/GTS2	40	34	F6	2
I/O/GSR	39	33	G7	64
TCK	17	11	A1	30
TDI	15	9	B3	28
TDO	30	24	G2	53
TMS	16	10	A2	29
V _{CCINT} 3.3V	21, 41	15, 35	C1, F7	3, 37
V _{CCIO} 2.5V/3.3V	32	26	G3	55
GND	10, 23, 31	4, 17, 25	A5, D1, F3	21, 41, 54
No Connects	-	-	C4, D4	1, 4, 12, 13, 14, 18, 23, 26, 31, 32, 34, 40, 46, 47, 51, 52, 58, 59

Notes:

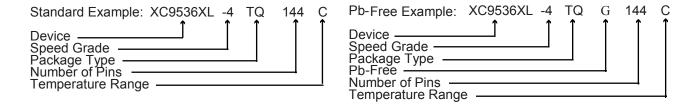
1. The pin-outs are the same for Pb-free versions of packages.

Device Part Marking and Ordering Combination Information

Sample package with part marking.

Notes:

- 1. Due to the small size of chip scale packages, part marking on these packages does not follow the above sample and the complete part number cannot be included in the marking. Part marking on chip scale packages by line:
 - Line 1 = X (Xilinx logo), then truncated part number (no XC), i.e., 95xxxXL.
 - · Line 2 = Not related to device part number.
 - Line 3 = Not related to device part number.
 - Line 4 = Package code, speed, operating temperature, three digits not related to part number. Package codes: C1 = CS48, C2 = CSG48.


Device Ordering and Part Marking Number	Speed (pin-to-pin delay)	Pkg. Symbol	No. of Pins	Package Type	Operating Range ⁽¹⁾
XC9536XL-5PC44C	5 ns	PC44	44-pin	Plastic Lead Chip Carrier (PLCC)	С
XC9536XL-5VQ44C	5 ns	VQ44	44-pin	Quad Flat Pack (VQFP)	С
XC9536XL-5CS48C	5 ns	CS48	48-ball	Chip Scale Package (CSP)	С
XC9536XL-5VQ64C	5 ns	VQ64	64-pin	Quad Flat Pack (VQFP)	С
XC9536XL-7PC44C	7.5 ns	PC44	44-pin	Plastic Lead Chip Carrier (PLCC)	С
XC9536XL-7VQ44C	7.5 ns	VQ44	44-pin	Quad Flat Pack (VQFP)	С
XC9536XL-7CS48C	7.5 ns	CS48	48-ball	Chip Scale Package (CSP)	С
XC9536XL-7VQ64C	7.5 ns	VQ64	64-pin	Quad Flat Pack (VQFP)	С
XC9536XL-7PC44I	7.5 ns	PC44	44-pin	Plastic Lead Chip Carrier (PLCC)	I
XC9536XL-7VQ44I	7.5 ns	VQ44	44-pin	Quad Flat Pack (VQFP)	I
XC9536XL-7CS48I	7.5 ns	CS48	48-ball	Chip Scale Package (CSP)	I
XC9536XL-7VQ64I	7.5 ns	VQ64	64-pin	Quad Flat Pack (VQFP)	I
XC9536XL-10PC44C	10 ns	PC44	44-pin	Plastic Lead Chip Carrier (PLCC)	С
XC9536XL-10VQ44C	10 ns	VQ44	44-pin	Quad Flat Pack (VQFP)	С
XC9536XL-10CS48C	10 ns	CS48	48-ball	Chip Scale Package (CSP)	С
XC9536XL-10VQ64C	10 ns	VQ64	64-pin	Quad Flat Pack (VQFP)	С
XC9536XL-10PC44I	10 ns	PC44	44-pin	Plastic Lead Chip Carrier (PLCC)	I
XC9536XL-10VQ44I	10 ns	VQ44	44-pin	Quad Flat Pack (VQFP)	I
XC9536XL-10CS48I	10 ns	CS48	48-ball	Chip Scale Package (CSP)	I
XC9536XL-10VQ64I	10 ns	VQ64	64-pin	Quad Flat Pack (VQFP)	I
XC9536XL-5PCG44C	5 ns	PCG44	44-pin	Plastic Lead Chip Carrier (PLCC); Pb-free	С
XC9536XL-5VQG44C	5 ns	VQG44	44-pin	Quad Flat Pack (VQFP); Pb-free	С

Device Ordering and Part Marking Number	Speed (pin-to-pin delay)	Pkg. Symbol	No. of Pins	Package Type	Operating Range ⁽¹⁾
XC9536XL-5CSG48C	5 ns	CSG48	48-ball	Chip Scale Package (CSP); Pb-free	С
XC9536XL-5VQG64C	5 ns	VQG64	64-pin	Quad Flat Pack (VQFP); Pb-free	С
XC9536XL-7PCG44C	7.5 ns	PCG44	44-pin	Plastic Lead Chip Carrier (PLCC); Pb-free	С
XC9536XL-7VQG44C	7.5 ns	VQG44	44-pin	Quad Flat Pack (VQFP); Pb-free	С
XC9536XL-7CSG48C	7.5 ns	CSG48	48-ball	Chip Scale Package (CSP); Pb-free	С
XC9536XL-7VQG64C	7.5 ns	VQG64	64-pin	Quad Flat Pack (VQFP); Pb-free	С
XC9536XL-7PCG44I	7.5 ns	PCG44	44-pin	Plastic Lead Chip Carrier (PLCC); Pb-free	I
XC9536XL-7VQG44I	7.5 ns	VQG44	44-pin	Quad Flat Pack (VQFP); Pb-free	I
XC9536XL-7CSG48I	7.5 ns	CSG48	48-ball	Chip Scale Package (CSP); Pb-free	I
XC9536XL-7VQG64I	7.5 ns	VQG64	64-pin	Quad Flat Pack (VQFP); Pb-free	I
XC9536XL-10PCG44C	10 ns	PCG44	44-pin	Plastic Lead Chip Carrier (PLCC); Pb-free	С
XC9536XL-10VQG44C	10 ns	VQG44	44-pin	Quad Flat Pack (VQFP); Pb-free	С
XC9536XL-10CSG48C	10 ns	CSG48	48-ball	Chip Scale Package (CSP); Pb-free	С
XC9536XL-10VQG64C	10 ns	VQG64	64-pin	Quad Flat Pack (VQFP); Pb-free	С
XC9536XL-10PCG44I	10 ns	PCG44	44-pin	Plastic Lead Chip Carrier (PLCC); Pb-free	I
XC9536XL-10VQG44I	10 ns	VQG44	44-pin	Quad Flat Pack (VQFP); Pb-free	I
XC9536XL-10CSG48I	10 ns	CSG48	48-ball	Chip Scale Package (CSP); Pb-free	I
XC9536XL-10VQG64I	10 ns	VQG64	64-pin	Quad Flat Pack (VQFP); Pb-free	I

Notes:

1. C = Commercial: $T_A = 0^{\circ}$ to +70°C; I = Industrial: $T_A = -40^{\circ}$ to +85°C.

Warranty Disclaimer

THESE PRODUCTS ARE SUBJECT TO THE TERMS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF THE PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED ON THE THEN-CURRENT XILINX DATA SHEET FOR THE PRODUCTS. PRODUCTS ARE NOT DESIGNED TO BE FAIL-SAFE AND ARE NOT WARRANTED FOR USE IN APPLICATIONS THAT POSE A RISK OF PHYSICAL HARM OR LOSS OF LIFE. USE OF PRODUCTS IN SUCH APPLICATIONS IS FULLY AT THE RISK OF CUSTOMER SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

Further Reading

The following Xilinx links go to relevant XC9500XL CPLD documentation, including XAPP111, Using the XC9500XL Timing Model, and XAPP784, Bulletproof CPLD Design Practices. Simply click on the link and scroll down.

Data Sheets, Application Notes, and White Papers.

Packaging

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
09/28/98	1.0	Initial Xilinx release.
08/28/00	1.1	Added VQ44 package.
06/20/02	1.2	Updated I _{CC} equation, page 1. Removed -4 device. Added industrial availability to -7 device. Added additional I _{IH} test conditions and measurements to DC Characteristics table.
06/18/03	1.3	Updated T _{SOL} from 260 to 220°C. Added Device Part Marking and updated Ordering Information.
08/21/03	1.4	Updated Package Device Marking Pin 1 orientation.
07/15/04	1.5	Added Pb-free documentation
09/15/04	1.6	Added T _{APRPW} specification to AC Characteristics.
07/15/05	1.7	Move to Product Specification
03/22/06	1.8	Add Warranty Disclaimer.
04/03/07	1.9	Add programming temperature range warning on page 1.

