E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj16ga002-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	7
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	17
3.0	CPU	23
4.0	Memory Organization	29
5.0	Flash Program Memory	47
6.0	Resets	53
7.0	Interrupt Controller	59
8.0	Oscillator Configuration	95
9.0	Power-Saving Features	. 103
10.0	I/O Ports	. 105
11.0	Timer1	. 125
12.0	Timer2/3 and Timer4/5	. 127
13.0	Input Capture	. 133
14.0	Output Compare	. 135
15.0	Serial Peripheral Interface (SPI)	. 141
16.0	Inter-Integrated Circuit (I ² C™)	. 151
17.0	Universal Asynchronous Receiver Transmitter (UART)	. 159
18.0	Parallel Master Port (PMP)	. 167
19.0	Real-Time Clock and Calendar (RTCC)	. 177
20.0	Programmable Cyclic Redundancy Check (CRC) Generator	. 189
21.0	10-Bit High-Speed A/D Converter	. 193
22.0	Comparator Module	203
23.0	Comparator Voltage Reference	207
24.0	Special Features	209
25.0	Development Support	219
26.0	Instruction Set Summary	223
27.0	Electrical Characteristics	. 231
28.0	Packaging Information	251
Appe	ndix A: Revision History	267
Appe	ndix B: Additional Guidance for PIC24FJ64GA004 Family Applications	268
Index		269
The N	/icrochip Web Site	. 273
Custo	mer Change Notification Service	273
Custo	mer Support	. 273
Read	er Response	. 274
Produ	Ict Identification System	275

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ64GA004 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (PIC24F J devices only) (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},\,6.3\text{V}$ or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for an explanation of the ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

2.4 **Voltage Regulator Pins** (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This section applies only to PIC24F J
	devices with an on-chip voltage regulator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:

- For ENVREG, tie to VDD to enable the regulator. or to ground to disable the regulator
- · For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to Section 24.2 "On-Chip Voltage Regulator" for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (< 5Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD and must use a capacitor of 10 µF connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specification can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to Section 27.0 "Electrical Characteristics" for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to Section 27.0 "Electrical Characteristics" for information on VDD and VDDCORE.

TABLE 2-1:	SUITABLE CAPACITOR	SUITABLE CAPACITOR EQUIVALENTS									
Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range						
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C						
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C						
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C						
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C						
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C						
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C						

R/W-0) R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPI	R IOPUWR	_		_		СМ	PMSLP
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
[
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
L:1 4 5							
DIT 15	1 = A Trop C	o Reset Flag bit	o occurred				
	$1 = A \operatorname{Trap} C$ 0 = A Trap C	onflict Reset has	s not occurre	ed			
bit 14	IOPUWR: Ille	egal Opcode or	Uninitialized	W Access Res	et Flag bit		
	1 = An illega	al opcode detec	ction, an ille	gal address m	ode or Uninitia	lized W registe	er used as an
	Address	Pointer caused	a Reset	a sistar Daast k		al	
bit 13 10		topcode of Unit	, ,	egister Reset r	las not occurre	u	
bit 0	CM: Configur	ration Word Mis	, match Posot	Elaa bit			
DIL 9	1 = A Configu	iration Word Mi	smatch Rese	t has occurred			
	0 = A Configu	uration Word Mi	smatch Rese	et has not occur	rred		
bit 8	PMSLP: Prog	gram Memory P	ower During	Sleep bit			
	1 = Program	memory bias v	oltage remai	ns powered du	ring Sleep		
	0 = Program	memory bias vo	oltage is powe	ered down durir	ig Sleep and vo	Itage regulator	enters Standby
bit 7	EYTE: Extern	nal Reset (MCL	D) Din hit				
	1 = A Master	Clear (pin) Res	et has occur	red			
	0 = A Master	Clear (pin) Res	et has not or	curred			
bit 6	SWR: Softwa	are Reset (Instru	iction) Flag b	bit			
	1 = A RESET	instruction has	been execut	ed			
	$0 = \mathbf{A} \text{ RESET}$	instruction has	not been exe	ecuted			
bit 5		oftware Enable/	Disable of W	DI bit ²			
	1 = WDT is e 0 = WDT is d	isabled					
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag b	it			
	1 = WDT time	e-out has occuri	red				
	0 = WDT time	e-out has not oc	curred				
bit 3	SLEEP: Wak	e from Sleep Fl	ag bit				
	1 = Device ha	as been in Sleel	o mode				
Note 1:	All of the Reset sta	atus bits may be	set or cleare	ed in software. S	Setting one of th	nese bits in soft	ware does not
2:	If the FWDTEN Co	onfiguration bit i	s '1' (unproa	rammed). the V	VDT is alwavs	enabled. regarc	lless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

SWDTEN bit setting.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	—	_	_	_	—	_		
bit 15	·	•					bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	_	_	_	_	INT2EP	INT1EP	INT0EP		
bit 7	·	•					bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	ALTIVT: Enat	le Alternate Int	errupt Vector -	Table bit					
	1 = Uses Alte	rnate Interrupt	Vector Table						
	0 = Uses stan	dard (default) I	nterrupt Vecto	r Table					
bit 14	DISI: DISI In	struction Status	s bit						
	1 = DISI inst	ruction is active	e etivo						
bit 12 2		tod: Pood os '	, ,						
bit 2		real Interrupt 2	, Edgo Dotoct [Polarity Soloct I	hit				
Dit 2	1 = Interrupt c	n negative edg	Luge Delect i	olarity Select	on				
	0 = Interrupt of	on positive edge	9						
bit 1	INT1EP: Exte	rnal Interrupt 1	Edge Detect F	Polarity Select I	bit				
	1 = Interrupt on negative edge								
	0 = Interrupt o	on positive edge	e						
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect F	Polarity Select I	bit				
	1 = Interrupt c	on negative edg	je						
	0 = interrupt c	on positive edge	9						

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

PIC24FJ64GA004 FAMILY

				11.0						
0-0				0-0						
	11172	111111	I IIPU	_	UCTIPZ	UCTIPT				
11-0	R/W-1	R/W/-0	R/W-0	11-0	R/M-1	R/W-0	R/W/-0			
	IC1IP2	IC1IP1	IC1IP0		INTOIP2					
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as 'd)'							
bit 14-12	T1IP<2:0>: ⊺	imer1 Interrupt	Priority bits							
	111 = Interru	ot is Priority 7 (I	nighest priority	vinterrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is disa	abled							
bit 11	Unimplemen	ted: Read as '0)'							
bit 10-8	OC1IP<2:0>:	Output Compa	re Channel 1 I	Interrupt Priority	/ bits					
	111 = Interrup	pt is Priority 7 (i	nignest priority	(interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1 of source is dis:	ahled							
bit 7	Unimplemen	ted: Read as '()'							
bit 6-4	IC1IP<2:0>:	nput Capture C	hannel 1 Inter	rupt Priority bits	3					
	111 = Interru	pt is Priority 7 (I	nighest priority	interrupt)	-					
	•		- i - j	. /						
	•									
	- 001 = Interrui	ot is Prioritv 1								
	000 = Interru	ot source is disa	abled							
bit 3	Unimplemen	ted: Read as 'o)'							
bit 2-0	INT0IP<2:0>:	External Interr	upt 0 Priority b	oits						
	111 = Interru	pt is Priority 7 (I	nighest priority	interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is disa	abled							

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Timers"** (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC), or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

NOTES:

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

 $TCY = 2 \bullet TOSC = 62.5 \text{ ns}$

 $PWM \ Period \quad = \quad 1/PWM \ Frequency = 1/52.08 \ kHz = 19.2 \ \mu s$

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

19.2 $\mu s = (PR2 + 1) \cdot 62.5 \text{ ns} \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate: PWM Resolution = $\log_{10}(FCY/FPWM)/\log_{10}2)$ bits

= $(\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2)$ bits

= 8.3 bits

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

TABLE 14-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz) ⁽
TABLE 14-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

PIC24FJ64GA004 FAMILY

REGISTER 18-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

U-0	R/W-0	U-0	U-0	U-0 R/W-0		R/W-0	R/W-0
—	CS1	—	—	— ADDR10 ⁽¹⁾		ADDR9 ⁽¹⁾	ADDR8 ⁽¹⁾
bit 15							bit 8

| R/W-0 |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| ADDR7 ⁽¹⁾ | ADDR6 ⁽¹⁾ | ADDR5 ⁽¹⁾ | ADDR4 ⁽¹⁾ | ADDR3 ⁽¹⁾ | ADDR2 ⁽¹⁾ | ADDR1 ⁽¹⁾ | ADDR0 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 14 CS1: Chip Select 1 bit
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 13-11 Unimplemented: Read as '0'
- bit 10-0 ADDR<10:0>: Parallel Port Destination Address bits⁽¹⁾
- Note 1: PMA<10:2> bits are not available on 28-pin devices.

REGISTER 18-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	PTEN14	—	—	—	PTEN10 ⁽¹⁾	PTEN9 ⁽¹⁾	PTEN8 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN7 ⁽¹⁾	PTEN6 ⁽¹⁾	PTEN5 ⁽¹⁾	PTEN4 ⁽¹⁾	PTEN3 ⁽¹⁾	PTEN2 ⁽¹⁾	PTEN1	PTEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	PTEN14: PMCS1 Strobe Enable bit
	1 = PMCS1 pin functions as chip select0 = PMCS1 pin functions as port I/O
bit 13-11	Unimplemented: Read as '0'
bit 10-2	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾
	1 = PMA<10:2> function as PMP address lines0 = PMA<10:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: PMA<10:2> bits are not available on 28-pin devices.

19.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

19.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR<1:0> bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 19-1).

By writing the RTCVALH byte, the RTCC Pointer value (the RTCPTR<1:0> bits) decrements by one until the bits reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window			
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>		
00	MINUTES	SECONDS		
01	WEEKDAY	HOURS		
10	MONTH	DAY		
11		YEAR		

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 19-2).

By writing the ALRMVALH byte, the Alarm Pointer value (the ALRMPTR<1:0> bits) decrements by one until the bits reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

EXAMPLE 19-1: SETTING THE RTCWREN BIT

```
asm volatile("push w7");
asm volatile("push w8");
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov w8, _NVMKEY");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RCFGCAL, #13"); //set the RTCWREN bit
asm volatile("pop w8");
asm volatile("pop w7");
```

TABLE 19-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window			
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11	_			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL, the bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

19.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 19-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 19-1.

PIC24FJ64GA004 FAMILY

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown		
hit 15 ADRC	• A/D Conversion Clock Source bit			

bit 15	
	1 = A/D internal RC clock
	0 = Clock derived from system clock
bit 14-13	Unimplemented: Read as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time bits
	11111 = 31 T AD
	••••
	00001 = 1 TAD
	00000 = 0 TAD (not recommended)
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111
	····· = Reserved
	0100000
	00111111 = 64 • T CY
	•••••
	00000001 = 2 • TCY
	00000000 = TCY

REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
r	JTAGEN	GCP	GWRP	DEBUG	r	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	r	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	r	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read as '0'	
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled 0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	1 = Code protection is disabled0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed
	0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode
hit 10	Beserved: Always maintain as '1'
bit 0.9	
DIL 9-0	11 - Emulator EMUC1/EMUD1 pins are shared with PCC1/PCD1
	10 = Emulator EMUC2/EMUD2 pins are shared with PGC2/PGD2
	01 = Emulator EMUC3/EMUD3 pins are shared with PGC3/PGD3
	00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled
	0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	1 = Standard Watchdog Timer is enabled
	0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Reserved
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	1 = Prescaler ratio of 1:128
	0 = Prescaler ratio of 1.32

24.2 On-Chip Voltage Regulator

All of the PIC24FJ64GA004 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ64GA004 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the DISVREG pin. Tying Vss to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 27.1 "DC Characteristics"**.

If DISVREG is tied to VDD, the regulator is disabled. In this case, separate power for the core logic at a nominal 2.5V must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 24-1 for possible configurations.

24.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown out" conditions, when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD, with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect (LVD) circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown.

Low-Voltage Detection is only available when the regulator is enabled.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

24.2.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ64GA004 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the tracking level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 27.1 "DC Characteristics"**.

26.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 26-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 26-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

PIC24FJ64GA004 FAMILY

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating te	perating Concernmentation	ditions: 2.0V -40°0 -40°0	T to 3.6V (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended		
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Power-Down	Current (IPD):	PMD Bits a	re Set, PMSL	.P Bit is '0' ⁽²⁾				
DC60	0.1	1	μA	-40°C				
DC60a	0.15	1	μA	+25°C				
DC60m	2.2	7.4	μA	+60°C	2.0V ⁽³⁾			
DC60b	3.7	12	μA	+85°C				
DC60j	15	50	μA	+125°C				
DC60c	0.2	1	μA	-40°C				
DC60d	0.25	1	μA	+25°C				
DC60n	2.6	15	μA	+60°C	2.5V ⁽³⁾	Base Power-Down Current ⁽⁵⁾		
DC60e	4.2	25	μA	+85°C				
DC60k	16	100	μΑ	+125°C				
DC60f	3.3	9	μA	-40°C				
DC60g	3.5	10	μA	+25°C				
DC60o	6.7	22	μΑ	+60°C	3.3∨ (4)			
DC60h	9	30	μA	+85°C				
DC60I	36	120	μΑ	+125°C				
DC61	1.75	3	μΑ	-40°C				
DC61a	1.75	3	μΑ	+25°C				
DC61m	1.75	3	μΑ	+60°C	2.0V ⁽³⁾			
DC61b	1.75	3	μΑ	+85°C				
DC61j	3.5	6	μΑ	+125°C				
DC61c	2.4	4	μΑ	-40°C				
DC61d	2.4	4	μΑ	+25°C				
DC61n	2.4	4	μΑ	+60°C	2.5V ⁽³⁾	Watchdog Timer Current: ΔIwDT ⁽⁵⁾		
DC61e	2.4	4	μΑ	+85°C				
DC61k	4.8	8	μΑ	+125°C		-		
DC61f	2.8	5	μΑ	-40°C				
DC61g	2.8	5	μΑ	+25°C				
DC61o	2.8	5	μΑ	+60°C	3.3∨ (4)			
DC61h	2.8	5	μΑ	+85°C				
DC61I	5.6	10	μA	+125°C				

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

INDEX

Α	
A/D Converter	
Analog Input Model	
Transfer Function	
AC Characteristics	
A/D Conversion Requirements	
A/D Specifications	
CLKO and I/O Requirements	
External Clock Requirements	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
PLL Clock Specifications	
Temperature and Voltage Specifications	
Additional Guidance for Family Applications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	4
16-Bit Timer1 125	5
Accessing Program Memory with	
Table Instructions45	5
Addressable Parallel Slave Port Example 174	4
Addressing for Table Registers47	7
CALL Stack Frame43	3
Comparator I/O Operating Modes203	3
Comparator Voltage Reference 207	7
CPU Programmer's Model25	5
CRC Module 189	9
CRC Shift Engine 190	0
Data Access from Program Space	
Address Generation 44	4
I ² C Module	2
Input Capture x133	3
LCD Control Example, Byte Mode 176	3
Legacy Parallel Slave Port Example174	4
Load Conditions for Timing Specifications	4
MCLR Pin Connections18	3
On-Chip Regulator Connections	5
Output Compare x138	3
Parallel EEPROM (Up to 11-Bit Address,	
16-Bit Data)176	3
Parallel EEPROM (Up to 11-Bit Address,	
8-Bit Data)176	3
Parallel Master Port (PMP) Module Overview	7
PIC24F CPU Core	4
PIC24FJ64GA004 Family (General)10	J
PMP 8-Bit Multiplexed Addressing and	_
Data Application176	Ś
PMP Master Mode, Demultiplexed Addressing 1/2	4
PMP Master Mode, Fully	_
Multiplexed Addressing	C
PMP Master Mode, Partially	_
Multiplexed Addressing	2
PMP Multiplexed Addressing Application	C
	_
Addressing Application	2
Pov Operation	2
Real-Time Clock and Calendar (RTCC)	ſ

Recommended Minimum Connections	17
Reset System	53
Shared I/O Port Structure	105
Simplified UARTx Module	159
SPIx Master/Frame Master Connection	149
SPIx Master/Frame Slave Connection	149
SPIx Master/Slave Connection	
(Enhanced Buffer Mode)	148
SPIx Master/Slave Connection	
(Standard Mode)	148
SPIx Module (Enhanced Mode)	143
SPIx Module (Standard Mode)	142
SPIx Slave/Frame Master Connection	149
SPIx Slave/Frame Slave Connection	149
Suggested Placement of Oscillator Circuit	21
System Clock	95
Timer2 and Timer4 (16-Bit Synchronous Mode)	129
Timer2/3 and Timer4/5 (32-Bit Mode)	128
Timer3 and Timer5 (16-Bit Synchronous Mode)	129
Watchdog Timer (WDT)	217

С

C Compilers	
MPLAB C18	220
Code Examples	
Basic Clock Switching Example	101
Configuring UART1 Input and Output	
Functions (PPS)	110
Erasing a Program Memory Block	50
I/O Port Read/Write	106
Initiating a Programming Sequence	51
Loading the Write Buffers	51
Setting the RTCWREN Bit	178
Single-Word Flash Programming	52
Code Protection	218
Comparator Voltage Reference	
Configuring	207
Configuration Bits	209
Core Features	7
CPU	
Arithmetic Logic Unit (ALU)	27
Control Registers	26
Core Registers	25
Programmer's Model	23
CRC	
Operation in Power Save Modes	190
Setup Example	189
User Interface	190
Customer Change Notification Service	273
Customer Notification Service	273
Customer Support	273
р	

D	
Data Memory	
Address Space	31
Memory Map	31
Near Data Space	32
Organization	32
SFR Space	32
Software Stack	43

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11