

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj16ga002-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_		—	—	_				_	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	—	—	_	—	_	_		_	_		—	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF		T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	—	_	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	—	_	PMPIF	—	—	—	OC5IF	—	IC5IF	IC4IF	IC3IF	_	—	—	SPI2IF	SPF2IF	0000
IFS3	008A	—	RTCIF	—	—	—	—	_	—	_	_	—	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	008C	—	—	—	—	—	—	—	LVDIF	_	—	—	—	CRCIF	U2ERIF	U1ERIF	—	0000
IEC0	0094	—	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—	_	PMPIE	—	—	—	OC5IE	—	IC5IE	IC4IE	IC3IE	_	—		SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE	—	—	—	—	_	—	_	—	—	_	—	MI2C2IE	SI2C2IE	—	0000
IEC4	009C		_		—	_		_	LVDIE		_	_	_	CRCIE	U2ERIE	U1ERIE	_	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0		IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	—	—	—	—	4444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_		—	_		_			AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0		MI2C1P2	MI2C1P1	MI2C1P0	_	SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE	_	_		—	_		_			_	—	_	_	INT1IP2	INT1IP1	INT1IP0	4444
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0		OC3IP2	OC3IP1	OC3IP0	_	_	_	_	4444
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	_		—	_		_			SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0	4444
IPC9	00B6		IC5IP2	IC5IP1	IC5IP0	—	IC4IP2	IC4IP1	IC4IP0		IC3IP2	IC3IP1	IC3IP0	_	_	_	_	4444
IPC10	00B8	—	_	—	—	—	—	—	—	_	OC5IP2	OC5IP1	OC5IP0	—	—	—	—	4444
IPC11	00BA	—	_	—	—	—	—	—	—	_	PMPIP2	PMPIP1	PMPIP0	—	—	—	—	4444
IPC12	00BC	—	_	—	—	—	MI2C2P2	MI2C2P1	MI2C2P0	_	SI2C2P2	SI2C2P1	SI2C2P0	—	—	—	—	4444
IPC15	00C2	—	—	—	—	—	RTCIP2	RTCIP1	RTCIP0	_	—	—	—	—	—	—	—	4444
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	—	_	—	_	4444
IPC18	00C8	_	_	_	—	—	_	_	—	_	—	_	_	_	LVDIP2	LVDIP1	LVDIP0	4444
INTTREG	00E0	CPUIRQ	—	VHOLD	-	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

DS39881E-page 34

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	—	—	—	—		TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	TRISA8(1)	TRISA7 ⁽¹⁾		_	TRISA4	TRISA3(2)	TRISA2(3)	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	_	_	RA10 ⁽¹⁾	RA9 ⁽¹⁾	RA8 ⁽¹⁾	RA7 ⁽¹⁾	_	_	RA4	RA3 ⁽²⁾	RA2 ⁽³⁾	RA1	RA0	0000
LATA	02C4	_	_	_	_	_	LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	LATA8 ⁽¹⁾	LATA7 ⁽¹⁾	_	_	LATA4	LATA3 ⁽²⁾	LATA2 ⁽³⁾	LATA1	LATA0	0000
ODCA	02C6	—	—	—	—		ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	ODA8 ⁽¹⁾	ODA7 ⁽¹⁾		_	ODA4	ODA3 ⁽²⁾	ODA2 ⁽³⁾	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on 28-pin devices; read as '0'.

2: These bits are only available when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise, read as '0'.

3: These bits are only available when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00 or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	0000
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC ⁽¹⁾	02D0	_		—	_	—	—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC ⁽¹⁾	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	0000
LATC ⁽¹⁾	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	0000
ODCC ⁽¹⁾	02D6	—	—	—	_	—	—	ODC9	OSC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.Bits are not available on 28-pin devices; read as '0'.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC		—		_	_	—	—	—	—	—	—	—	_	-	RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>		0				
(Code Execution)			0xx xxxx x	xxx xxxx xxxx xxx0						
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>					
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>						
		1:	xxx xxxx	XXX		xxx				
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0>(1)						
(Block Remap/Read)		0	XXXX XXX	κx	xxx xxxx xxxx xxxx					

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	י'				
bit 14-12	U1RXIP<2:0>	UART1 Rece	eiver Interrupt F	Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	כי				
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	bits			
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '					
bit 6-4	SPF1IP<2:0>	: SPI1 Fault In	terrupt Priority	bits			
	111 = Interrup	ot is Priority 7 (highest priority	nterrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
1.11.0	000 = Interrup	ot source is dis	abled				
Dit 3		ted: Read as 1					
bit 2-0	13IP<2:0>: 1	imer3 Interrupt	Priority bits	· · · · · · · · · · · · · · · · · · ·			
		ot is priority 7 (nignest priority	Interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	ablad				
	000 = interrup	JU SOULCE IS DIS	auleu				

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 10-7: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15		•					bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

0-0	0-0	0-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 IC5R<4:0>: Assign Input Capture 5 (IC5) to the Corresponding RPn Pin bits

REGISTER 10-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl							

bit 15-13 Unimplemented: Read as '0'

bit 12-8 OCFBR<4:0>: Assign Output Compare Fault B (OCFB) to the Corresponding RPn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits

		D/M/ O	11.0	11.0	11.0	11.0	11.0
R/W-U	0-0		0-0	0-0	0-0	0-0	0-0
I UN		TSIDL	—	_	_	—	— hit 0
DIL 15							DIL 8
11-0	R/W/-0	R/W-0	R/W-0	R/W-0	11-0	R/W-0	11-0
	TGATE	TCKPS1	TCKPS0	T32(1)		TCS ⁽²⁾	
bit 7	10/112			102		100	bit 0
Legend:							
R = Read	able bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timerx	On bit					
	When TxCO	N<3> = 1:					
	1 = Starts 32	2-bit Timerx/y					
	0 = Stops 32	2 - Dit Timerx/y					
	1 = Starts 16	6-bit Timerx					
	0 = Stops 16	bit Timerx					
bit 14	Unimplemer	nted: Read as 'o)'				
bit 13	TSIDL: Time	rx Stop in Idle N	lode bit				
	1 = Discontin	ues module ope	eration when d	evice enters Id	le mode		
1:140 7	0 = Continue	s module opera	tion in Idle mo	de			
DIT 12-7		ited: Read as ') ^r A a a uma ulatiana	Enchle hit			
DIT 6	IGAIE: IIme		Accumulation	Enable bit			
	This bit is ign	ored.					
	When TCS =	0:					
	1 = Gated tir	ne accumulatioi ne accumulatioi	n is enabled				
bit 5-4	TCKPS<1:0>	: Timerx Input (Clock Prescale	Select bits			
	11 = 1:256			001001.2110			
	10 = 1:64						
	01 = 1:8						
hit 3	00 - 1.1 T32· 32_Bit T	ïmer Mode Sele	oct bit(1)				
DIL O	1 = Timerx a	and Timery form	a single 32-bit	timer			
	0 = Timerx a	ind Timery act a	s two 16-bit tir	ners			
	In 32-bit mod	le, T3CON conti	ol bits do not a	affect 32-bit tim	er operation.		
bit 2	Unimplemer	nted: Read as '0)'				
bit 1	TCS: Timerx	Clock Source S	elect bit ⁽²⁾				
	1 = Externa	l clock from pin,	TxCK (on the	rising edge)			
bit 0		nted: Read as ')'				
Note 1	In 32 bit mode #		CON control P	nite do not offer	t 32_hit timor o	peration	
2:	If TCS = 1. RPIN	Rx (TxCK) mus	t be configured	d to an available	e RPn pin. For	more informatio	n. see
	Section 10.4 "Pe	eripheral Pin S	elect (PPS)".				,

REGISTER 12-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

 $TCY = 2 \bullet TOSC = 62.5 \text{ ns}$

 $PWM \ Period \quad = \quad 1/PWM \ Frequency = 1/52.08 \ kHz = 19.2 \ \mu s$

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

19.2 $\mu s = (PR2 + 1) \cdot 62.5 \text{ ns} \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate: PWM Resolution = $\log_{10}(FCY/FPWM)/\log_{10}2)$ bits

= $(\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2)$ bits

= 8.3 bits

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

TABLE 14-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz) ⁽
TABLE 14-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

14.4 Output Compare Register

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	OCSIDL		—			—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	OCFLT	OCTSEL	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in HW only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare x Timer Select bit
	1 = Timer3 is the clock source for Output Compare x
	0 = Timer2 is the clock source for Output Compare x
	Refer to the device data sheet for specific time bases available to the output compare module.
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits ⁽¹⁾
	111 = PWM mode on OCx; Fault pin, OCFx, is enabled ⁽²⁾
	110 = PWM mode on OCx; Fault pin, OCFx, is disabled ⁽²⁾
	101 = Initializes OCx pin low, generates continuous output pulses on OCx pin
	100 = Initializes OCx pin low, generates single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initializes OCX pin high, compare event forces OCX pin low
	0.01 = 1 initializes OCX pin low, compare event forces OCX pin high
	000 - Output compare channel is disabled
Note 1:	RPORx (OCx) must be configured to an available RPn pin. For more information, see Section 10.4

- "Peripheral Pin Select (PPS)".
- 2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.

FIGURE 15-3: SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)

REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTEI	REGISTER 19-9:
---	----------------

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
	—	—	_		WDAY2	WDAY1	WDAY0	
bit 15	·				•		bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0	
bit 7	·				•	•	bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-11	Unimplemen	ted: Read as 'd)'					
bit 10-8	WDAY<2:0>:	Binary Coded	Decimal Value	of Weekday Di	git bits			
	Contains a value from 0 to 6.							
bit 7-6	Unimplemented: Read as '0'							
bit 5-4	HRTEN<1:0>	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits						
	Contains a va	alue from 0 to 2.			-			

bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

© 2010-2013 Microchip Technology Inc.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit 0
X7	X6	X5	X4	X3	X2	X1	_
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
bit 15							bit 8
X15	X14	X13	X12	X11	X10	X9	X8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHONE				CH0SB3 ^(1,2)	CH0SB2 ^(1,2)	CH0SB1 ^(1,2)	CH0SB0 ^(1,2)	
bit 15			•				bit 8	
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NA	· _	—	_	CH0SA3 ^(1,2)	CH0SA2 ^(1,2)	CH0SA1 ^(1,2)	CH0SA0 ^(1,2)	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15	CH0NB: Cha	nnel 0 Negative	e Input Select f	or MUX B Multi	plexer Setting	bit		
	1 = Channel () negative inpu	t is AN1					
	0 = Channel () negative inpu	t is VR-					
bit 14-12	Unimplemen	ted: Read as '),			(1.2)		
bit 11-8	CH0SB<3:0>	: Channel 0 Pc	sitive Input Se	lect for MUX B	Multiplexer Set	tting bits ^(1,2)		
	1111 = Chan	nel 0 positive ir nol 0 positivo ir	iput is AN15 (t	band gap voltag	e reference)			
	1011 = Chan	nel 0 positive il nel 0 positive ir	nput is AN12					
		·····						
	0001 = Chan	0001 = Channel 0 positive input is AN1						
h:+ 7	0000 = Channel 0 positive input is ANU							
DIL 7	CHUNA: Channel U Negative Input Select for MUX A Multiplexer Setting bit							
	0 = Channel () negative inpu	t is VR-					
bit 6-4	Unimplemen	ted: Read as ')'					
bit 3-0	CH0SA<3:0>	: Channel 0 Po	sitive Input Se	lect for MUX A	Multiplexer Set	tting bits ^(1,2)		
	1111 = Chan	nel 0 positive ir	nput is AN15 (t	oand gap voltag	e reference)	C C		
	1100 = Chan	1100 = Channel 0 positive input is AN12						
	1011 = Chan	nel 0 positive ir	put is AN11					
	0001 = Chan	nel 0 positive ir	nout is AN1					
	0000 = Chan	nel 0 positive ir	nput is AN0					
Note 1.	Combinations '1	101 ' and ' 1110	' are unimpler	mented: do not				
2:	 Combinations, 1101 and 1110, are unimplemented; do not use. Analog Channels AN6 AN7 and AN8 are unavailable on 28-pin devices: do not use 							
		,, .						

REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

NOTES:

TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		Standard Operating Conditions: 2.0Operating temperature-40-40				2.0V to 3.6V (unless otherwise stated) $10^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $10^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max Units Conditions					
Operat	ing Volta	ge							
DC10	Supply \	/oltage							
	Vdd		VBORMIN		3.6	V	Regulator enabled		
	Vdd		VDDCORE		3.6	V	Regulator disabled		
	VDDCORE		2.0		2.75	V	Regulator disabled		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	_	V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V			
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	-	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms		
DC18	VBOR	Brown-out Reset Voltage	1.8	2.1	2.2	V			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DI31	IPU	Maximum Load Current	—	_	30	μA	VDD = 2.0V
		for Digital High Detection with Internal Pull-up		—	100	μA	VDD = 3.3V
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	—	-	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \mbox{ at high-impedance } \end{split}$
DI51		Analog Input Pins	—	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$
DI55		MCLR	—	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI	—	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$
DI60a	licl	Input Low Injection Current	0		₋₅ (5,8)	mA	All pins exce <u>pt VDD</u> , VSS, AVDD, AVSS, MCLR, VCAP, RB11, SOSCI, SOSCO, D+, D-, VUSB, and VBUS
DI60b	lісн	Input High Injection Current	0		+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB11, SOSCI, SOSCO, D+, D-, VUSB, and VBUS, and all 5V tolerant pins ⁽⁷⁾
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20(9)	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT)

TABLE 27-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- **3:** Negative current is defined as current sourced by the pin.
- **4:** Refer to Table 1-2 for I/O pin buffer types.
- 5: Parameter is characterized but not tested.
- **6:** Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- **7:** Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources greater than 5.5V.
- 8: Injection currents > | 0 | can affect the performance of all analog peripherals (e.g., A/D, comparators, internal band gap reference, etc.)
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

Ρ

Packaging	
Details	
Marking	251
Parallel Master Port. See PMP.	
Peripheral Enable Bits	104
Peripheral Module Disable (PMD) Bits	
Peripheral Pin Select (PPS)	107
Available Peripherals and Pins	107
Configuration Control	109
Considerations for Use	110
Input Mapping	
Mapping Exceptions	109
Output Mapping	109
Peripheral Priority	107
Registers	111–124
Pinout Descriptions	11–16
PMSLP Bit	
and Wake-up Time	103
Power Supply Pins	
Power-Saving Features	103
Clock Frequency and Switching	103
Instruction-Based Modes	103
Selective Peripheral Power Control	104
Power-up Requirements	216
Product Identification System	
Program Memory	
Access Using Table Instructions	45
Address Construction	43
Address Space	
Flash Configuration Words	30
Memory Map	
Organization	30
Program Space Visibility (PSV)	
Program Verification	
Pulse-Width Modulation. See PWM.	

R

Reader Response	274
Register Maps	
A/D Converter (ADC)	
Clock Control	
CPU Core	33
CRC	
Dual Comparator	
I ² C	
ICN	
Input Capture	35
Interrupt Controller	34
NVM	
Output Compare	
Pad Configuration	
Parallel Master/Slave Port	40
Peripheral Pin Select (PPS)	41
PMD	
PORTA	
PORTB	
PORTC	
Real-Time Clock and Calendar (RTCC)	40
SPI	
Timers	
UART	

Registers	
AD1CHS (A/D Input Select)	198
AD1CON1 (A/D Control 1)	195
AD1CON2 (A/D Control 2)	196
AD1CON3 (A/D Control 3)	197
AD1CSSL (A/D Input Scan Select)	199
AD1PCFG (A/D Port Configuration)	199
ALCFGRPT (Alarm Configuration)	181
ALMINSEC (Alarm Minutes and	
Seconds Value)	185
ALMTHDY (Alarm Month and Day Value)	184
ALWDHR (Alarm Weekday and Hours Value)	185
CLKDIV (Clock Divider)	99
CMCON (Comparator Control)	204
CORCON (CPU Control)	27, 63
CRCCON (CRC Control)	191
CRCXOR (CRC XOR Polynomial)	192
CVRCON (Comparator Voltage	
Reference Control)	208
CW1 (Flash Configuration Word 1)	210
CW2 (Flash Configuration Word 2)	212
DEVID (Device ID)	213
DEVREV (Device Revision)	214
I2CxCON (I2Cx Control)	154
I2CxMSK (I2Cx Slave Mode Address Mask)	157
I2CxSTAT (I2Cx Status)	156
ICxCON (Input Capture x Control)	134
IEC0 (Interrupt Enable Control 0)	72
IEC1 (Interrupt Enable Control 1)	74
IEC2 (Interrupt Enable Control 2)	75
IEC3 (Interrupt Enable Control 3)	76
IEC4 (Interrupt Enable Control 4)	77
IFS0 (Interrupt Flag Status 0)	66
IFS1 (Interrupt Flag Status 1)	68
IFS2 (Interrupt Flag Status 2)	69
IFS3 (Interrupt Flag Status 3)	70
IFS4 (Interrupt Flag Status 4)	71
INTCON1 (Interrupt Control 1)	64
INTCON2 (Interrupt Control 2)	65
INTTREG (Interrupt Control and Status)	93
IPC0 (Interrupt Priority Control 0)	78
IPC1 (Interrupt Priority Control 1)	79
IPC10 (Interrupt Priority Control 10)	88
IPC11 (Interrupt Priority Control 11)	88
IPC12 (Interrupt Priority Control 12)	89
IPC15 (Interrupt Priority Control 15)	90
IPC16 (Interrupt Priority Control 16)	91
IPC18 (Interrupt Priority Control 18)	
IPC2 (Interrupt Priority Control 2)	80
IPC3 (Interrupt Priority Control 3)	81
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	83
IPC6 (Interrupt Priority Control 6)	84
IPC7 (Interrupt Priority Control 7)	85
IPC8 (Interrupt Priority Control 8)	86
IPC9 (Interrupt Priority Control 9)	87
MINSEC (RTCC Minutes and Seconds Value)	183
MTHDY (RTCC Month and Day Value)	182
NVMCON (Flash Memory Control)	49
OCxCON (Output Compare x Control)	139
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tune)	100

NOTES: