

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj16ga004-e-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables (IVT), located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 7.1** "Interrupt Vector Table".

4.1.3 FLASH CONFIGURATION WORDS

In PIC24FJ64GA004 family devices, the top two words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration registers. The addresses of the Flash Configuration Word for devices in the PIC24FJ64GA004 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 24.1** "**Configuration Bits**".

TABLE 4-1:FLASH CONFIGURATION
WORDS FOR PIC24FJ64GA004
FAMILY DEVICES

Device	Program Memory (K words)	Configuration Word Addresses
PIC24FJ16GA	5.5	002BFCh: 002BFEh
PIC24FJ32GA	11	0057FCh: 0057FEh
PIC24FJ48GA	16	0083FCh: 0083FEh
PIC24FJ64GA	22	00ABFCh: 00ABFEh

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

IIISW Addreese	most sign	ificant wor	a	least significant wo	JIU	PC Address
Address		۸ <u>ــــــ</u>				(ISW Address
		23	16	8	0	
000001h	0000000					000000h
000003h	0000000					000002h
000005h	00000000					000004h
000007h	00000000					000006h
	<u> </u>	\sim		~		
	Program Memory 'Phantom' Byte (read as '0')	/	Instruc	tion Width		

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_	_	-	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	SOSCEN	OSWEN	(Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3140
OSCTUN	0748	_		_		_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by the type of Reset.

TABLE 4-23: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	—	—	—	_	ERASE	—	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	_	_	—	_	_	_	_	_				NVMKE	Y<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for a POR only. The value on other Reset states is dependent on the state of the memory write or erase operations at the time of Reset.

TABLE 4-24: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADC1MD	0000
PMD2	0772	_	_	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCPMD	_	_	_	_	_	I2C2MD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode
 - 0 = Device has not been in Idle mode
- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred (note that BOR is also set after a Power-on Reset)
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
	RTCIE	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	—	—	—	—	MI2C2IE	SI2C2IE	_
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	-Time Clock/Ca	lendar Interrup	ot Enable bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 13-3	Unimplemen	ted: Read as '	0'				
bit 2	MI2C2IE: Ma	ster I2C2 Even	t Interrupt Ena	ble bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 1	SI2C2IE: Sla	ve I2C2 Event	Interrupt Enabl	le bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	MI2C2P2	MI2C2P1	MI2C2P0
bit 15				·			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	SI2C2P2	SI2C2P1	SI2C2P0	<u> </u>		—	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	MI2C2P<2:0:	>: Master I2C2	Event Interrup	t Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	nt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	SI2C2P<2:0>	Slave I2C2 E	vent Interrupt	Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•			. /			
	•						
	•	nt in Driarity 1					
	001 = Interru	pt is Phonity 1 pt source is dis	abled				
hit 3-0	Unimplemen	ted: Read as '	n'				
511 5-0	Sumplemen	icu. Neau as	0				

To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).
- Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - Clear the SPIxIF bit in the respective IFSx register.
 - Set the SPIxIE bit in the respective IECx register.
 - Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 5	D/A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from slave
	0 = Write – Indicates data transfer is input to slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	U = Receive is not complete, I2CXRCV is empty Hardware is set when I2CXRCV is written with received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes I2CxTRN. Hardware is clear at completion of data transmission.

Note 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data, either as a slave or a master. Reading ACKSTAT after receiving address or data bytes returns an invalid result.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

AMSK<9:0>: Mask for Address Bit x Select bits

- 1 = Enables masking for bit x of incoming message address; bit match is not required in this position
- 0 = Disables masking for bit x; bit match is required in this position

bit 9-0

REGISTER 18-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	_	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7	-		•				bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	wn

bit 15-2 Unimplemented: Read as '0'

- bit 1RTSECSEL: RTCC Seconds Clock Output Select bit(1)1 = RTCC seconds clock is selected for the RTCC pin0 = RTCC alarm pulse is selected for the RTCC pinbit 0PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

FIGURE 18-2: LEGACY PARALLEL SLAVE PORT EXAMPLE

FIGURE 18-3: ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE

TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION

PMA<1:0>	Output Register (Buffer)	Input Register (Buffer)
00	PMDOUT1<7:0> (0)	PMDIN1<7:0> (0)
01	PMDOUT1<15:8> (1)	PMDIN1<15:8> (1)
10	PMDOUT2<7:0> (2)	PMDIN2<7:0> (2)
11	PMDOUT2<15:8> (3)	PMDIN2<15:8> (3)

FIGURE 18-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)

19.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

19.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR<1:0> bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 19-1).

By writing the RTCVALH byte, the RTCC Pointer value (the RTCPTR<1:0> bits) decrements by one until the bits reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window				
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11		YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 19-2).

By writing the ALRMVALH byte, the Alarm Pointer value (the ALRMPTR<1:0> bits) decrements by one until the bits reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

EXAMPLE 19-1: SETTING THE RTCWREN BIT

```
asm volatile("push w7");
asm volatile("push w8");
asm volatile("disi #5");
asm volatile("mov #0x55, w7");
asm volatile("mov w7, _NVMKEY");
asm volatile("mov w8, _NVMKEY");
asm volatile("mov w8, _NVMKEY");
asm volatile("bset _RCFGCAL, #13"); //set the RTCWREN bit
asm volatile("pop w8");
asm volatile("pop w7");
```

TABLE 19-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	_				

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL, the bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

19.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 19-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 19-1.

REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTEI	REGISTER 19-9:
---	----------------

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	—	—	_		WDAY2	WDAY1	WDAY0
bit 15	·						bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7	·				•	•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
bit 15-11	Unimplemen	ted: Read as 'd)'				
bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits							
	Contains a value from 0 to 6.						
bit 7-6	7-6 Unimplemented: Read as '0'						
bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits							
	Contains a value from 0 to 2.						

bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

© 2010-2013 Microchip Technology Inc.

Note 1: A write to this register is only allowed when RTCWREN = 1.

FIGURE 19-2	ALARM MASK SETTINGS

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours	Minutes Seconds	
0000 – Every half second 0001 – Every second				:	
0010 – Every 10 seconds				:	
0011 – Every minute				: : : : :	
0100 – Every 10 minutes				: m : s s	
0101 – Every hour				: m m : s s	
0110 – Every day			hh	: m m : s s	
0111 – Every week	d		hh	: m m : s s	
1000 – Every month		/ d	hh	: m m : s s	
1001 – Every year ⁽¹⁾		m m / d d	hh	; m m ; s s	
Note 1: Annually, except when configured for February 29.					

R/W-0	U-0	R/C-0	U-0	U-0	U-0	R/W-0	R/W-0				
ADON ⁽¹⁾	_	ADSIDL	_	_	_	FORM1	FORM0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R/W-0, HSC				
SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE				
bit 7							bit 0				
Legend:		C = Clearable	bit	it HSC = Hardware Settable/Clearable bit							
R = Readable	bit	W = Writable									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
			(1)								
DIT 15	ADON: A/D Conv.	perating Mode									
	1 = A/D Conv 0 = A/D Conv	erter is off	soperating								
bit 14	Unimplement	ted: Read as ')'								
bit 13	ADSIDL: A/D	Stop in Idle Mo	ode bit								
	1 = Discontin	ues module op	eration when d	levice enters Id	le mode						
	0 = Continue	s module opera	ation in Idle mo	de							
bit 12-10	Unimplement	ted: Read as ')'								
bit 9-8	FORM<1:0>: Data Output Format bits										
	11 = Signed fi10 = Fractiona	ractional (sadd al (dddd-dddd	1 dddd dd00 1 dd00 0000)	0000)							
	01 = Signed in	nteger (ssss	sssd dddd d	ddd)							
	00 = Integer (0000 00ad dddd dddd)										
bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits											
111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved											
	10x = Reserv	ed									
	011 = Reserv	ed .									
	010 = Timer3 compare ends sampling and starts conversion										
	000 = Clearing the SAMP bit ends sampling and starts conversion										
bit 4-3	Unimplemented: Read as '0'										
bit 2	ASAM: A/D Sample Auto-Start bit										
	 1 = Sampling begins immediately after last conversion completes; SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set 										
bit 1	SAMP: A/D Sample Enable bit										
	 1 = A/D Sample-and-Hold (S/H) amplifier is sampling input 0 = A/D Sample-and-Hold amplifier is holding 										
bit 0	DONE: A/D C	onversion Stat	us bit								
	1 = A/D conversion is done										
	0 = A/D conve	ersion is NOT c	ione								

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: The ADC1BUFn registers do not retain their values when ADON is cleared. Read out any conversion values from the buffer before disabling the module.

26.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 26-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 26-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins	Vss	—	0.2 VDD	V	
DI11		PMP Pins	Vss	—	0.15 VDD	V	PMPTTL = 1
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSCI (XT mode)	Vss	_	0.2 VDD	V	
DI17		OSCI (HS mode)	Vss	—	0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	—	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus enabled
	Vih	Input High Voltage ⁽⁴⁾					
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V	
DI21		PMP Pins: with Analog Functions Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	Vdd 5.5	V V	PMPTTL = 1
DI25		MCLR	0.8 Vdd	—	Vdd	V	
DI26		OSCI (XT mode)	0.7 VDD	—	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1	_	VDD	V	2 5V < Vpin < Vpp
DI30	ICNPU	CNxx Pull-up Current	50	250	400	uΑ	$V_{DD} = 3.3V$. VPIN = Vss

TABLE 27-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: Refer to Table 1-2 for I/O pin buffer types.
- **5:** Parameter is characterized but not tested.
- **6:** Non-5V tolerant pins, VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- **7:** Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources greater than 5.5V.
- 8: Injection currents > | 0 | can affect the performance of all analog peripherals (e.g., A/D, comparators, internal band gap reference, etc.)
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
	Clock Parameters						
AD50	Tad	A/D Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state
AD51	tRC	A/D Internal RC Oscillator Period	—	250	_	ns	
	Conversion Rate						
AD55	tCONV	Conversion Time		12	_	TAD	
AD56	FCNV	Throughput Rate		_	500	ksps	$AVDD \ge 2.7V$
AD57	tSAMP	Sample Time	—	1	—	TAD	
Clock Parameters							
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	TAD	

TABLE 27-21: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

NOTES:

APPENDIX B: ADDITIONAL GUIDANCE FOR PIC24FJ64GA004 FAMILY APPLICATIONS

B.1 Additional Methods for Power Reduction

Devices in the PIC24FJ64GA004 family include a number of core features to significantly reduce the application's power requirements. For truly power-sensitive applications, it is possible to further reduce the application's power demands by taking advantage of the device's regulator architecture. These methods help decrease power in two ways: by disabling the internal voltage regulator to eliminate its power consumption, and by reducing the voltage on VDDCORE to lower the device's dynamic current requirements. Using these methods, it is possible to reduce Sleep currents (IPD) from 3.5 µA to 250 nA (typical values, refer to Parameters DC60d and DC60g in Table 27-6). For dynamic power consumption, the reduction in VDDCORE from 2.5V provided by the regulator, to 2.0V, can provide a power reduction of about 30%.

When using a regulated power source or a battery with a constant output voltage, it is possible to decrease power consumption by disabling the regulator. In this case (Figure B-1), a simple diode can be used to reduce the voltage from 3V or greater to the 2V-2.5V required for VDDCORE. This method is only advised on power supplies, such as Lithium Coin cells, which maintain a constant voltage over the life of the battery.

FIGURE B-1: POWER REDUCTION EXAMPLE FOR CONSTANT VOLTAGE SUPPLIES

A similar method can be used for non-regulated sources (Figure B-2). In this case, it can be beneficial to use a low quiescent current, external voltage regulator. Devices, such as the MCP1700, consume only 1 μ A to regulate to 2V or 2.5V, which is lower than the current required to power the internal voltage regulator.

FIGURE B-2: POWER REDUCTION EXAMPLE FOR NON-REGULATED SUPPLIES

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
Fror	1: Name				
	Company				
	Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Арр	ication (optional):				
Wou	ld you like a reply?YN				
Dev	ce: PIC24FJ64GA004 Family	Literature Number: DS39881E			
Que	stions:				
1.	What are the best features of this document?				
2.	How does this document meet your hardware and soft	ware development needs?			
3.	Do you find the organization of this document easy to	follow? If not, why?			
4.	What additions to the document do you think would er	hance the structure and subject?			
5.	. What deletions from the document could be made without affecting the overall usefulness?				
6.	s there any incorrect or misleading information (what	and where)?			
•					
7.	How would you improve this document?				
•					