
Microchip Technology - PIC24FJ16GA004-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 16-Bit

Speed 32MHz

Connectivity I²C, PMP, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 35

Program Memory Size 16KB (5.5K x 24)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 3.6V

Data Converters A/D 13x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-VQFN Exposed Pad

Supplier Device Package 44-QFN (8x8)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic24fj16ga004-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic24fj16ga004-i-ml-4390944
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC24FJ64GA004 FAMILY
Pin Diagrams

P
IC

24
F

JX
X

G
A

00
2

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

28-Pin SPDIP, SSOP, SOIC

28-Pin QFN(1)

10 11

2
3

6

1

18
19
20
21

22

12 13 14
15

8
7

16
17

232425262728

9

PIC24FJXXGA002
5
4

MCLR

VSS

VDD

AN0/VREF+/CN2/RA0
AN1/VREF-/CN3/RA1

PGED1/AN2/C2IN-/RP0/CN4/RB0

SOSCO/T1CK/CN0/PMA1/RA4
SOSCI/RP4/PMBE/CN1/RB4

OSCO/CLKO/CN29/PMA0/RA3
OSCI/CLKI/CN30/RA2

AN5/C1IN+/SCL2/RP3/CN7/RB3
AN4/C1IN-/SDA2/RP2/CN6/RB2

PGEC1/AN3/C2IN+/RP1/CN5/RB1

PGED3/ASDA1/RP5/CN27/PMD7/RB5

VDD

VSS

PGEC3/ASCL1/RP6/CN24/PMD6/RB6

DISVREG
VCAP/VDDCORE

RP7/INT0/CN23/PMD5/RB7

TDO/SDA1/RP9/CN21/PMD3/RB9
TCK/SCL1/RP8/CN22/PMD4/RB8

AN9/RP15/CN11/PMCS1/RB15
AN10/CVREF/RTCC/RP14/CN12/PMWR/RB14
AN11/RP13/CN13/PMRD/RB13

AN12/RP12/CN14/PMD0/RB12

PGED2/TDI/RP10/CN16/PMD2/RB10
PGEC2/TMS/RP11/CN15/PMD1/RB11

VSS

PGED1/AN2/C2IN-/RP0/CN4/RB0

OSCO/CLKO/CN29/PMA0/RA3
OSCI/CLKI/CN30/RA2

AN5/C1IN+/SCL2/RP3/CN7/RB3
AN4/C1IN-/SDA2/RP2/CN6/RB2

PGEC1/AN3/C2IN+/RP1/CN5/RB1

DISVREG
VCAP/VDDCORE

TDO/SDA1/RP9/CN21/PMD3/RB9

AN11/RP13/CN13/PMRD/RB13
AN12/RP12/CN14/PMD0/RB12

PGED2/TDI/RP10/CN16/PMD2/RB10
PGEC2/TMS/RP11/CN15/PMD1/RB11

V
D

D

P
G

E
C

3/
A

S
C

L
1/

R
P

6
/C

N
24

/P
M

D
6

/R
B

6

S
O

S
C

O
/T

1C
K

/C
N

0/
P

M
A

1/
R

A
4

S
O

S
C

I/R
P

4/
P

M
B

E
/C

N
1/

R
B

4

R
P

7
/IN

T
0/

C
N

23
/P

M
D

5/
R

B
7

T
C

K
/S

C
L1

/R
P

8
/C

N
22

/P
M

D
4

/R
B

8

P
G

E
D

3
/A

S
D

A
1

/R
P

5/
C

N
2

7/
P

M
D

7/
R

B
5

M
C

LR
A

N
0/

V
R

E
F
+

/C
N

2/
R

A
0

A
N

1/
V

R
E

F
-/

C
N

3
/R

A
1

V
D

D

V
S

S

A
N

9/
R

P
15

/C
N

11
/P

M
C

S
1

/R
B

15
A

N
10

/C
V

R
E

F
/R

T
C

C
/R

P
14

/C
N

12
/P

M
W

R
/R

B
14

Legend: RPn represents remappable peripheral pins. Gray shading indicates 5.5V tolerant input pins.
Note 1: Back pad on QFN devices should be connected to Vss.
DS39881E-page 2  2010-2013 Microchip Technology Inc.

PIC24FJ64GA004 FAMILY
Pin Diagrams (Continued)

10
11

2
3
4
5
6

1

1
8

1
9

2
0

2
1

2
2

1
2

1
3

1
4

1
5

38
8
7

44 43 42 41 40 39
1

6
1

7

29
30
31
32
33

23
24
25
26
27
28

36 3435

9

PIC24FJXXGA004

37

44-Pin QFN(1)

S
C

L
1/

R
P

8
/C

N
22

/P
M

D
4

/R
B

8
R

P
7

/IN
T

0/
C

N
23

/P
M

D
5/

R
B

7
P

G
E

C
3/

A
S

C
L1

/R
P

6/
C

N
2

4/
P

M
D

6/
R

B
6

P
G

E
D

3/
A

S
D

A
1/

R
P

5
/C

N
27

/P
M

D
7

/R
B

5
V

D
D

T
D

I/
P

M
A

9/
R

A
9

S
O

S
C

O
/T

1C
K

/C
N

0
/R

A
4

V
S

S

R
P

2
1/

C
N

2
6/

P
M

A
3/

R
C

5
R

P
2

0/
C

N
2

5/
P

M
A

4/
R

C
4

R
P

1
9/

C
N

2
8/

P
M

B
E

/R
C

3
AN12/RP12/CN14/PMD0/RB12

PGEC2/RP11/CN15/PMD1/RB11
PGED2/RP10/CN16/PMD2/RB10

VCAP/VDDCORE

DISVREG
RP25/CN19/PMA6/RC9
RP24/CN20/PMA5/RC8
RP23/CN17/PMA0/RC7
RP22/CN18/PMA1/RC6

SDA1/RP9/CN21/PMD3/RB9

AN11/RP13/CN13/PMRD/RB13 AN4/C1IN-/SDA2/RP2/CN6/RB2
AN5/C1IN+/SCL2/RP3/CN7/RB3
AN6/RP16/CN8/RC0
AN7/RP17/CN9/RC1
AN8/RP18/CN10/PMA2/RC2

SOSCI/RP4/CN1/RB4

VDD

VSS

OSCI/CLKI/CN30/RA2
OSCO/CLKO/CN29/RA3
TDO/PMA8/RA8

P
G

E
C

1
/A

N
3/

C
2

IN
+

/R
P

1
/C

N
5/

R
B

1
P

G
E

D
1/

A
N

2
/C

2I
N

-/
R

P
0

/C
N

4/
R

B
0

 A
N

1/
V

R
E

F
-/

C
N

3
/R

A
1

A
N

0
/V

R
E

F
+

/C
N

2
/R

A
0

M
C

L
R

T
M

S
/P

M
A

10
/R

A
10

A
V

D
D

A
V

S
S

A
N

9/
R

P
15

/C
N

11
/P

M
C

S
1

/R
B

15
A

N
10

/C
V

R
E

F
/R

T
C

C
/R

P
14

/C
N

12
/P

M
W

R
/R

B
1

4
T

C
K

/P
M

A
7/

R
A

7

Legend: RPn represents remappable peripheral pins. Gray shading indicates 5.5V tolerant input pins.
Note 1: Back pad on QFN devices should be connected to Vss.
 2010-2013 Microchip Technology Inc. DS39881E-page 3

PIC24FJ64GA004 FAMILY
2.0 GUIDELINES FOR GETTING
STARTED WITH 16-BIT
MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ64GA004 family of
16-bit microcontrollers requires attention to a minimal
set of device pin connections before proceeding with
development.

The following pins must always be connected:

• All VDD and VSS pins
(see Section 2.2 “Power Supply Pins”)

• All AVDD and AVSS pins, regardless of whether or
not the analog device features are used
(see Section 2.2 “Power Supply Pins”)

• MCLR pin
(see Section 2.3 “Master Clear (MCLR) Pin”)

• ENVREG/DISVREG and VCAP/VDDCORE pins
(PIC24F J devices only)
(see Section 2.4 “Voltage Regulator Pins
(ENVREG/DISVREG and VCAP/VDDCORE)”)

These pins must also be connected if they are being
used in the end application:

• PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)

• OSCI and OSCO pins when an external oscillator
source is used
(see Section 2.6 “External Oscillator Pins”)

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage
reference for analog modules is implemented

The minimum mandatory connections are shown in
Figure 2-1.

FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTIONS

Note: The AVDD and AVSS pins must always be
connected, regardless of whether any of
the analog modules are being used.

PIC24FJXXXX

V
D

D

V
S

S

VDD

VSS

VSS

VDD

A
V

D
D

A
V

S
S

V
D

D

V
S

S

C1

R1

VDD

MCLR
VCAP/VDDCORE

R2 (EN/DIS)VREG

(1)

C7

C2(2)

C3(2)

C4(2)C5(2)

C6(2)

Key (all values are recommendations):

C1 through C6: 0.1 F, 20V ceramic

C7: 10 F, 6.3V or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

Note 1: See Section 2.4 “Voltage Regulator Pins
(ENVREG/DISVREG and VCAP/VDDCORE)”
for an explanation of the ENVREG/DISVREG
pin connections.

2: The example shown is for a PIC24F device
with five VDD/VSS and AVDD/AVSS pairs.
Other devices may have more or less pairs;
adjust the number of decoupling capacitors
appropriately.

(1)
 2010-2013 Microchip Technology Inc. DS39881E-page 17

PIC24FJ64GA004 FAMILY
4.0 MEMORY ORGANIZATION

As Harvard architecture devices, PIC24F micro-
controllers feature separate program and data memory
spaces and buses. This architecture also allows the
direct access of program memory from the data space
during code execution.

4.1 Program Address Space

The program address memory space of the
PIC24FJ64GA004 family devices is 4M instructions.
The space is addressable by a 24-bit value derived

from either the 23-bit Program Counter (PC) during pro-
gram execution, or from table operation or data space
remapping, as described in Section 4.3 “Interfacing
Program and Data Memory Spaces”.

User access to the program memory space is restricted
to the lower half of the address range (000000h to
7FFFFFh). The exception is the use of TBLRD/TBLWT
operations which use TBLPAG<7> to permit access to
the Configuration bits and Device ID sections of the
configuration memory space.

Memory maps for the PIC24FJ64GA004 family of
devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ64GA004 FAMILY DEVICES

000000h

0000FEh

000002h

000100h

F8000Eh
F80010h

FEFFFEh

FFFFFFh

000004h

000200h
0001FEh
000104h

Reset Address

User Flash
Program Memory
(11K instructions)

DEVID (2)

GOTO Instruction

Reserved

Alternate Vector Table

Reserved

Interrupt Vector Table

PIC24FJ32GA

C
o

nf
ig

u
ra

tio
n

 M
e

m
o

ry
 S

pa
ce

U
se

r
M

em
or

y
S

pa
ce

Flash Config Words

Note: Memory areas are not shown to scale.

Reset Address

Device Config Registers

DEVID (2)

GOTO Instruction

Reserved

Alternate Vector Table

Reserved

Interrupt Vector Table

PIC24FJ48GA

FF0000h

F7FFFEh
F80000h

Device Config Registers

800000h
7FFFFFh

Reserved

Reserved

Flash Config Words

00AC00h
00ABFEh

Unimplemented
Read ‘0’ Unimplemented

Read ‘0’

Reset Address

Device Config Registers

User Flash
Program Memory
(22K instructions)

DEVID (2)

GOTO Instruction

Reserved

Alternate Vector Table

Reserved

Interrupt Vector Table

PIC24FJ64GA

Reserved

Flash Config Words

Unimplemented
Read ‘0’

Reset Address

DEVID (2)

GOTO Instruction

Reserved

Alternate Vector Table

Reserved

Interrupt Vector Table

PIC24FJ16GA

Flash Config Words

Device Config Registers

Reserved

Unimplemented
Read ‘0’

005800h
0057FEh

002C00h
002BFEh

User Flash
Program Memory
(5.5K instructions)

008400h
0083FEh

User Flash
Program Memory
(16K instructions)
 2010-2013 Microchip Technology Inc. DS39881E-page 29

P
IC

24F
J64G

A
004 F

A
M

IL
Y

D
S

3
9

8
8

1
E

-p
a

g
e

 3
4


 2

0
1

0
-2

0
1

3
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

Bit 3 Bit 2 Bit 1 Bit 0
All

Resets

ADDRERR STKERR OSCFAIL — 0000

— INT2EP INT1EP INT0EP 0000

T1IF OC1IF IC1IF INT0IF 0000

CNIF CMIF MI2C1IF SI2C1IF 0000

— — SPI2IF SPF2IF 0000

— MI2C2IF SI2C2IF — 0000

CRCIF U2ERIF U1ERIF — 0000

T1IE OC1IE IC1IE INT0IE 0000

CNIE CMIE MI2C1IE SI2C1IE 0000

— — SPI2IE SPF2IE 0000

— MI2C2IE SI2C2IE — 0000

CRCIE U2ERIE U1ERIE — 0000

— INT0IP2 INT0IP1 INT0IP0 4444

— — — — 4444

— T3IP2 T3IP1 T3IP0 4444

— U1TXIP2 U1TXIP1 U1TXIP0 4444

— SI2C1P2 SI2C1P1 SI2C1P0 4444

— INT1IP2 INT1IP1 INT1IP0 4444

— — — — 4444

— T5IP2 T5IP1 T5IP0 4444

— SPF2IP2 SPF2IP1 SPF2IP0 4444

— — — — 4444

— — — — 4444

— — — — 4444

— — — — 4444

— — — — 4444

— — — — 4444

— LVDIP2 LVDIP1 LVDIP0 4444

VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000
TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File
Name

Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

INTCON1 0080 NSTDIS — — — — — — — — — — MATHERR

INTCON2 0082 ALTIVT DISI — — — — — — — — — —

IFS0 0084 — — AD1IF U1TXIF U1RXIF SPI1IF SPF1IF T3IF T2IF OC2IF IC2IF —

IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF — — — — INT1IF

IFS2 0088 — — PMPIF — — — OC5IF — IC5IF IC4IF IC3IF —

IFS3 008A — RTCIF — — — — — — — — — —

IFS4 008C — — — — — — — LVDIF — — — —

IEC0 0094 — — AD1IE U1TXIE U1RXIE SPI1IE SPF1IE T3IE T2IE OC2IE IC2IE —

IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE — — — — INT1IE

IEC2 0098 — — PMPIE — — — OC5IE — IC5IE IC4IE IC3IE —

IEC3 009A — RTCIE — — — — — — — — — —

IEC4 009C — — — — — — — LVDIE — — — —

IPC0 00A4 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0

IPC1 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0

IPC2 00A8 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPF1IP2 SPF1IP1 SPF1IP0

IPC3 00AA — — — — — — — — — AD1IP2 AD1IP1 AD1IP0

IPC4 00AC — CNIP2 CNIP1 CNIP0 — CMIP2 CMIP1 CMIP0 — MI2C1P2 MI2C1P1 MI2C1P0

IPC5 00AE — — — — — — — — — — — —

IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0

IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0

IPC8 00B4 — — — — — — — — — SPI2IP2 SPI2IP1 SPI2IP0

IPC9 00B6 — IC5IP2 IC5IP1 IC5IP0 — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0

IPC10 00B8 — — — — — — — — — OC5IP2 OC5IP1 OC5IP0

IPC11 00BA — — — — — — — — — PMPIP2 PMPIP1 PMPIP0

IPC12 00BC — — — — — MI2C2P2 MI2C2P1 MI2C2P0 — SI2C2P2 SI2C2P1 SI2C2P0

IPC15 00C2 — — — — — RTCIP2 RTCIP1 RTCIP0 — — — —

IPC16 00C4 — CRCIP2 CRCIP1 CRCIP0 — U2ERIP2 U2ERIP1 U2ERIP0 — U1ERIP2 U1ERIP1 U1ERIP0

IPC18 00C8 — — — — — — — — — — — —

INTTREG 00E0 CPUIRQ — VHOLD — ILR3 ILR2 ILR1 ILR0 — VECNUM6 VECNUM5 VECNUM4

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

P
IC

24F
J64G

A
004 F

A
M

IL
Y

D
S

3
9

8
8

1
E

-p
a

g
e

 4
2


 2

0
1

0
-2

0
1

3
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

Bit 3 Bit 2 Bit 1 Bit 0
All

Resets

SLEEP IDLE BOR POR (Note 1)

CF — SOSCEN OSWEN (Note 2)

— — — — 3140

TUN3 TUN2 TUN1 TUN0 0000

Bit 3 Bit 2 Bit 1 Bit 0
All

Resets

NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)

KEY<7:0> 0000

e of Reset.

Bit 3 Bit 2 Bit 1 Bit 0
All

Resets

D SPI1MD — — ADC1MD 0000

D OC4MD OC3MD OC2MD OC1MD 0000

— — I2C2MD — 0000
TABLE 4-22: CLOCK CONTROL REGISTER MAP

File
Name

Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

RCON 0740 TRAPR IOPUWR — — — — CM PMSLP EXTR SWR SWDTEN WDTO

OSCCON 0742 — COSC2 COSC1 COSC0 — NOSC2 NOSC1 NOSC0 CLKLOCK IOLOCK LOCK —

CLKDIV 0744 ROI DOZE2 DOZE1 DOZE0 DOZEN RCDIV2 RCDIV1 RCDIV0 — — — —

OSCTUN 0748 — — — — — — — — — — TUN5 TUN4

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by the type of Reset.

TABLE 4-23: NVM REGISTER MAP

File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

 NVMCON 0760 WR WREN WRERR — — — — — — ERASE — —

NVMKEY 0766 — — — — — — — — NVM

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: Reset value shown is for a POR only. The value on other Reset states is dependent on the state of the memory write or erase operations at the tim

TABLE 4-24: PMD REGISTER MAP

File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

PMD1 0770 T5MD T4MD T3MD T2MD T1MD — — — I2C1MD U2MD U1MD SPI2M

PMD2 0772 — — — IC5MD IC4MD IC3MD IC2MD IC1MD — — — OC5M

PMD3 0774 — — — — — CMPMD RTCCMD PMPMD CRCPMD — — —

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

PIC24FJ64GA004 FAMILY
4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15
register in PIC24F devices is also used as a Software
Stack Pointer. The pointer always points to the first
available free word and grows from lower to higher
addresses. It pre-decrements for stack pops and
post-increments for stack pushes, as shown in
Figure 4-4. Note that for a PC push during any CALL
instruction, the MSB of the PC is zero-extended before
the push, ensuring that the MSB is always clear.

The Stack Pointer Limit Value register (SPLIM), associ-
ated with the Stack Pointer, sets an upper address
boundary for the stack. SPLIM is uninitialized at Reset.
As is the case for the Stack Pointer, SPLIM<0> is
forced to ‘0’ because all stack operations must be
word-aligned. Whenever an EA is generated using
W15 as a source or destination pointer, the resulting
address is compared with the value in SPLIM. If the
contents of the Stack Pointer (W15) and the SPLIM
register are equal, and a push operation is performed,
a stack error trap will not occur. The stack error trap will
occur on a subsequent push operation. Thus, for
example, if it is desirable to cause a stack error trap
when the stack grows beyond address 2000h in RAM,
initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is
generated when the Stack Pointer address is found to
be less than 0800h. This prevents the stack from
interfering with the Special Function Register (SFR)
space.

A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.

FIGURE 4-4: CALL STACK FRAME

4.3 Interfacing Program and Data
Memory Spaces

The PIC24F architecture uses a 24-bit wide program
space and 16-bit wide data space. The architecture is
also a modified Harvard scheme, meaning that data
can also be present in the program space. To use this
data successfully, it must be accessed in a way that
preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture
provides two methods by which program space can be
accessed during operation:

• Using table instructions to access individual bytes
or words anywhere in the program space

• Remapping a portion of the program space into
the data space (Program Space Visibility)

Table instructions allow an application to read or write
to small areas of the program memory. This makes the
method ideal for accessing data tables that need to be
updated from time to time. It also allows access to all
bytes of the program word. The remapping method
allows an application to access a large block of data on
a read-only basis, which is ideal for look-ups from a
large table of static data. It can only access the least
significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program
spaces are 16 and 24 bits, respectively, a method is
needed to create a 23-bit or 24-bit program address
from 16-bit data registers. The solution depends on the
interface method to be used.

For table operations, the 8-bit Table Memory Page
Address register (TBLPAG) is used to define a 32K word
region within the program space. This is concatenated
with a 16-bit EA to arrive at a full 24-bit program space
address. In this format, the Most Significant bit of
TBLPAG is used to determine if the operation occurs in
the user memory (TBLPAG<7> = 0) or the configuration
memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space
Visibility Page Address register (PSVPAG) is used to
define a 16K word page in the program space. When
the Most Significant bit of the EA is ‘1’, PSVPAG is con-
catenated with the lower 15 bits of the EA to form a
23-bit program space address. Unlike table operations,
this limits remapping operations strictly to the user
memory area.

Table 4-25 and Figure 4-5 show how the program EA is
created for table operations and remapping accesses
from the data EA. Here, P<23:0> refers to a program
space word, whereas D<15:0> refers to a data space
word.

Note: A PC push during exception processing
will concatenate the SRL register to the
MSB of the PC prior to the push.

<Free Word>

PC<15:0>

000000000

015

W15 (before CALL)

W15 (after CALL)

S
ta

ck
 G

ro
w

s
To

w
a

rd
s

H
ig

he
r

A
dd

re
ss

0000h

PC<22:16>

POP : [--W15]
PUSH : [W15++]
 2010-2013 Microchip Technology Inc. DS39881E-page 43

PIC24FJ64GA004 FAMILY
5.2 RTSP Operation

The PIC24F Flash program memory array is organized
into rows of 64 instructions or 192 bytes. RTSP allows
the user to erase blocks of eight rows (512 instructions)
at a time and to program one row at a time. It is also
possible to program single words.

The 8-row erase blocks and single row write blocks are
edge-aligned, from the beginning of program memory, on
boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT
instructions, the data is not written directly to memory.
Instead, data written using table writes is stored in
holding latches until the programming sequence is
executed.

Any number of TBLWT instructions can be executed
and a write will be successfully performed. However,
64 TBLWT instructions are required to write the full row
of memory.

To ensure that no data is corrupted during a write, any
unused addresses should be programmed with
FFFFFFh. This is because the holding latches reset to
an unknown state, so if the addresses are left in the
Reset state, they may overwrite the locations on rows
which were not rewritten.

The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the buffers. Programming is performed by
setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding regis-
ters can be written to multiple times before performing
a write operation. Subsequent writes, however, will
wipe out any previous writes.

All of the table write operations are single-word writes
(2 instruction cycles), because only the buffers are writ-
ten. A programming cycle is required for programming
each row.

5.3 Enhanced In-Circuit Serial
Programming

Enhanced In-Circuit Serial Programming uses an
on-board bootloader, known as the Program Executive
(PE), to manage the programming process. Using an
SPI data frame format, the Program Executive can
erase, program and verify program memory. For more
information on Enhanced ICSP, see the device
programming specification.

5.4 Control Registers

There are two SFRs used to read and write the
program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which
blocks are to be erased, which memory type is to be
programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write
protection. To start a programming or erase sequence,
the user must consecutively write 55h and AAh to the
NVMKEY register. Refer to Section 5.5 “Programming
Operations” for further details.

5.5 Programming Operations

A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode. During a programming or erase operation, the
processor stalls (waits) until the operation is finished.
Setting the WR bit (NVMCON<15>) starts the opera-
tion and the WR bit is automatically cleared when the
operation is finished.

Configuration Word values are stored in the last two
locations of program memory. Performing a page erase
operation on the last page of program memory clears
these values and enables code protection. As a result,
avoid performing page erase operations on the last
page of program memory.

Note: Writing to a location multiple times without
erasing it is not recommended.
DS39881E-page 48  2010-2013 Microchip Technology Inc.

PIC24FJ64GA004 FAMILY
6.0 RESETS

The Reset module combines all Reset sources and
controls the device Master Reset Signal, SYSRST. The
following is a list of device Reset sources:

• POR: Power-on Reset

• MCLR: Pin Reset

• SWR: RESET Instruction

• WDT: Watchdog Timer Reset

• BOR: Brown-out Reset

• CM: Configuration Mismatch Reset

• TRAPR: Trap Conflict Reset

• IOPUWR: Illegal Opcode Reset

• UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is
shown in Figure 6-1.

Any active source of Reset will make the SYSRST
signal active. Many registers associated with the CPU
and peripherals are forced to a known Reset state.
Most registers are unaffected by a Reset; their status is
unknown on POR and unchanged by all other Resets.

All types of device Reset will set a corresponding status
bit in the RCON register to indicate the type of Reset
(see Register 6-1). A Power-on Reset will clear all bits
except for the BOR and POR bits (RCON<1:0>) which
are set. The user may set or clear any bit at any time
during code execution. The RCON bits only serve as
status bits. Setting a particular Reset status bit in
software will not cause a device Reset to occur.

The RCON register also has other bits associated with
the Watchdog Timer and device power-saving states.
The function of these bits is discussed in other sections
of this manual.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

Note: This data sheet summarizes the features of
this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
“Reset” (DS39712).

Note: Refer to the specific peripheral or CPU
section of this manual for register Reset
states.

Note: The status bits in the RCON register
should be cleared after they are read so
that the next RCON register value after a
device Reset will be meaningful.

MCLR

VDD

VDD Rise
Detect

POR

Sleep or Idle

Brown-out
Reset

Enable Voltage Regulator

RESET
Instruction

WDT
Module

Glitch Filter

BOR

Trap Conflict

Illegal Opcode

Uninitialized W Register

SYSRST

Configuration Mismatch
 2010-2013 Microchip Technology Inc. DS39881E-page 53

PIC24FJ64GA004 FAMILY
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0

bit 15 bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’

bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 7 Unimplemented: Read as ‘0’

bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 3 Unimplemented: Read as ‘0’

bit 2-0 INT0IP<2:0>: External Interrupt 0 Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled
DS39881E-page 78  2010-2013 Microchip Technology Inc.

PIC24FJ64GA004 FAMILY
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— CNIP2 CNIP1 CNIP0 — CMIP2 CMIP1 CMIP0

bit 15 bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— MI2C1P2 MI2C1P1 MI2C1P0 — SI2C1P2 SI2C1P1 SI2C1P0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 CNIP<2:0>: Input Change Notification Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’

bit 10-8 CMIP<2:0>: Comparator Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 7 Unimplemented: Read as ‘0’

bit 6-4 MI2C1P<2:0>: Master I2C1 Event Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 3 Unimplemented: Read as ‘0’

bit 2-0 SI2C1P<2:0>: Slave I2C1 Event Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled
DS39881E-page 82  2010-2013 Microchip Technology Inc.

PIC24FJ64GA004 FAMILY
REGISTER 7-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— CRCIP2 CRCIP1 CRCIP0 — U2ERIP2 U2ERIP1 U2ERIP0

bit 15 bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0

— U1ERIP2 U1ERIP1 U1ERIP0 — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 CRCIP<2:0>: CRC Generator Error Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’

bit 10-8 U2ERIP<2:0>: UART2 Error Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 7 Unimplemented: Read as ‘0’

bit 6-4 U1ERIP<2:0>: UART1 Error Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is Priority 1
000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as ‘0’
 2010-2013 Microchip Technology Inc. DS39881E-page 91

PIC24FJ64GA004 FAMILY
REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER

R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-1

ROI DOZE2 DOZE1 DOZE0 DOZEN(1) RCDIV2 RCDIV1 RCDIV0

bit 15 bit 8

U-0 U-1 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 ROI: Recover on Interrupt bit

1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1
0 = Interrupts have no effect on the DOZEN bit

bit 14-12 DOZE<2:0>: CPU Peripheral Clock Ratio Select bits

111 = 1:128
110 = 1:64
101 = 1:32
100 = 1:16
011 = 1:8
010 = 1:4
001 = 1:2
000 = 1:1

bit 11 DOZEN: DOZE Enable bit(1)

1 = DOZE<2:0> bits specify the CPU peripheral clock ratio
0 = CPU peripheral clock ratio is set to 1:1

bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits

111 = 31.25 kHz (divide-by-256)
110 = 125 kHz (divide-by-64)
101 = 250 kHz (divide-by-32)
100 = 500 kHz (divide-by-16)
011 = 1 MHz (divide-by-8)
010 = 2 MHz (divide-by-4)
001 = 4 MHz (divide-by-2)
000 = 8 MHz (divide-by-1)

bit 7 Unimplemented: Read as ‘0’

bit 6 Unimplemented: Read as ‘1’

bit 5-0 Unimplemented: Read as ‘0’

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.
 2010-2013 Microchip Technology Inc. DS39881E-page 99

PIC24FJ64GA004 FAMILY
REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — — SCK2R4 SCK2R3 SCK2R2 SCK2R1 SCK2R0

bit 15 bit 8

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — — SDI2R4 SDI2R3 SDI2R2 SDI2R1 SDI2R0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’

bit 12-8 SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

— — — SS2R4 SS2R3 SS2R2 SS2R1 SS2R0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-5 Unimplemented: Read as ‘0’

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn Pin bits
 2010-2013 Microchip Technology Inc. DS39881E-page 117

PIC24FJ64GA004 FAMILY
REGISTER 18-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — RTSECSEL(1) PMPTTL

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-2 Unimplemented: Read as ‘0’

bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit(1)

1 = RTCC seconds clock is selected for the RTCC pin
0 = RTCC alarm pulse is selected for the RTCC pin

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers
0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.
 2010-2013 Microchip Technology Inc. DS39881E-page 173

PIC24FJ64GA004 FAMILY
EQUATION 21-1: A/D CONVERSION CLOCK PERIOD(1)

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

TAD = TCY • (ADCS +1)

ADCS = TAD

TCY
– 1

CPIN

Rs ANx
VT = 0.6V

VT = 0.6V
ILEAKAGE

Sampling
Switch

RSS

CHOLD
= DAC Capacitance

VSS

VDD

= 4.4 pF (Typical)500 nA

Legend: CPIN

VT

ILEAKAGE

RIC

RSS

CHOLD

= Input Capacitance

= Threshold Voltage
= Leakage Current at the pin due to

= Interconnect Resistance
= Sampling Switch Resistance
= Sample/Hold Capacitance (from DAC)

various junctions

Note: CPIN value depends on device package and is not tested. The effect of CPIN is negligible if Rs  5 k.

RSS  5 k(Typical)

6-11 pF
(Typical)

VA

RIC  250
DS39881E-page 200  2010-2013 Microchip Technology Inc.

PIC24FJ64GA004 FAMILY

DS39881E-page 220  2010-2013 Microchip Technology Inc.

25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multipurpose
source files

• Directives that allow complete control over the
assembly process

25.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

25.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

PIC24FJ64GA004 FAMILY
26.0 INSTRUCTION SET SUMMARY

The PIC24F instruction set adds many enhancements
to the previous PIC® MCU instruction sets, while main-
taining an easy migration from previous PIC MCU
instruction sets. Most instructions are a single program
memory word. Only three instructions require two
program memory locations.

Each single-word instruction is a 24-bit word divided
into an 8-bit opcode, which specifies the instruction
type and one or more operands, which further specify
the operation of the instruction. The instruction set is
highly orthogonal and is grouped into four basic
categories:

• Word or byte-oriented operations

• Bit-oriented operations

• Literal operations

• Control operations

Table 26-1 shows the general symbols used in
describing the instructions. The PIC24F instruction set
summary in Table 26-2 lists all the instructions, along
with the status flags affected by each instruction.

Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands:

• The first source operand which is typically a
register ‘Wb’ without any address modifier

• The second source operand which is typically a
register ‘Ws’ with or without an address modifier

• The destination of the result which is typically a
register ‘Wd’ with or without an address modifier

However, word or byte-oriented file register instructions
have two operands:

• The file register specified by the value, ‘f’

• The destination, which could either be the file
register ‘f’ or the W0 register, which is denoted as
‘WREG’

Most bit-oriented instructions (including simple
rotate/shift instructions) have two operands:

• The W register (with or without an address
modifier) or file register (specified by the value of
‘Ws’ or ‘f’)

• The bit in the W register or file register
(specified by a literal value or indirectly by the
contents of register, ‘Wb’)

The literal instructions that involve data movement may
use some of the following operands:

• A literal value to be loaded into a W register or file
register (specified by the value of ‘k’)

• The W register or file register where the literal
value is to be loaded (specified by ‘Wb’ or ‘f’)

However, literal instructions that involve arithmetic or
logical operations use some of the following operands:

• The first source operand which is a register ‘Wb’
without any address modifier

• The second source operand which is a literal
value

• The destination of the result (only if not the same
as the first source operand) which is typically a
register ‘Wd’ with or without an address modifier

The control instructions may use some of the following
operands:

• A program memory address

• The mode of the table read and table write
instructions

All instructions are a single word, except for certain
double-word instructions, which were made
double-word instructions so that all the required infor-
mation is available in these 48 bits. In the second word,
the 8 MSbs are ‘0’s. If this second word is executed as
an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
Program Counter (PC) is changed as a result of the
instruction. In these cases, the execution takes two
instruction cycles, with the additional instruction
cycle(s) executed as a NOP. Notable exceptions are the
BRA (unconditional/computed branch), indirect
CALL/GOTO, all table reads and writes, and
RETURN/RETFIE instructions, which are single-word
instructions but take two or three cycles.

Certain instructions that involve skipping over the sub-
sequent instruction require either two or three cycles if
the skip is performed, depending on whether the
instruction being skipped is a single-word or two-word
instruction. Moreover, double-word moves require two
cycles. The double-word instructions execute in two
instruction cycles.

Note: This chapter is a brief summary of the
PIC24F Instruction Set Architecture (ISA)
and is not intended to be a comprehensive
reference source.
 2010-2013 Microchip Technology Inc. DS39881E-page 223

PIC24FJ64GA004 FAMILY
GOTO GOTO Expr Go to Address 2 2 None

GOTO Wn Go to Indirect 1 2 None

INC INC f f = f + 1 1 1 C, DC, N, OV, Z

INC f,WREG WREG = f + 1 1 1 C, DC, N, OV, Z

INC Ws,Wd Wd = Ws + 1 1 1 C, DC, N, OV, Z

INC2 INC2 f f = f + 2 1 1 C, DC, N, OV, Z

INC2 f,WREG WREG = f + 2 1 1 C, DC, N, OV, Z

INC2 Ws,Wd Wd = Ws + 2 1 1 C, DC, N, OV, Z

IOR IOR f f = f .IOR. WREG 1 1 N, Z

IOR f,WREG WREG = f .IOR. WREG 1 1 N, Z

IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N, Z

IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N, Z

IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N, Z

LNK LNK #lit14 Link Frame Pointer 1 1 None

LSR LSR f f = Logical Right Shift f 1 1 C, N, OV, Z

LSR f,WREG WREG = Logical Right Shift f 1 1 C, N, OV, Z

LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C, N, OV, Z

LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N, Z

LSR Wb,#lit4,Wnd Wnd = Logical Right Shift Wb by lit4 1 1 N, Z

MOV MOV f,Wn Move f to Wn 1 1 None

MOV [Wns+Slit10],Wnd Move [Wns+Slit10] to Wnd 1 1 None

MOV f Move f to f 1 1 N, Z

MOV f,WREG Move f to WREG 1 1 None

MOV #lit16,Wn Move 16-bit Literal to Wn 1 1 None

MOV.b #lit8,Wn Move 8-bit Literal to Wn 1 1 None

MOV Wn,f Move Wn to f 1 1 None

MOV Wns,[Wns+Slit10] Move Wns to [Wns+Slit10] 1 1 None

MOV Wso,Wdo Move Ws to Wd 1 1 None

MOV WREG,f Move WREG to f 1 1 None

MOV.D Wns,Wd Move Double from W(ns):W(ns+1) to Wd 1 2 None

MOV.D Ws,Wnd Move Double from Ws to W(nd+1):W(nd) 1 2 None

MUL MUL.SS Wb,Ws,Wnd {Wnd+1, Wnd} = Signed(Wb) * Signed(Ws) 1 1 None

MUL.SU Wb,Ws,Wnd {Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws) 1 1 None

MUL.US Wb,Ws,Wnd {Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws) 1 1 None

MUL.UU Wb,Ws,Wnd {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws) 1 1 None

MUL.SU Wb,#lit5,Wnd {Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5) 1 1 None

MUL.UU Wb,#lit5,Wnd {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5) 1 1 None

MUL f W3:W2 = f * WREG 1 1 None

NEG NEG f f = f + 1 1 1 C, DC, N, OV, Z

NEG f,WREG WREG = f + 1 1 1 C, DC, N, OV, Z

NEG Ws,Wd Wd = Ws + 1 1 1 C, DC, N, OV, Z

NOP NOP No Operation 1 1 None

NOPR No Operation 1 1 None

POP POP f Pop f from Top-of-Stack (TOS) 1 1 None

POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None

POP.D Wnd Pop from Top-of-Stack (TOS) to W(nd):W(nd+1) 1 2 None

POP.S Pop Shadow Registers 1 1 All

PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None

PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None

PUSH.D Wns Push W(ns):W(ns+1) to Top-of-Stack (TOS) 1 2 None

PUSH.S Push Shadow Registers 1 1 None

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly
Mnemonic

Assembly Syntax Description
of

Words
of

Cycles
Status Flags

Affected
 2010-2013 Microchip Technology Inc. DS39881E-page 227

PIC24FJ64GA004 FAMILY
DS39881E-page 262  2010-2013 Microchip Technology Inc.

