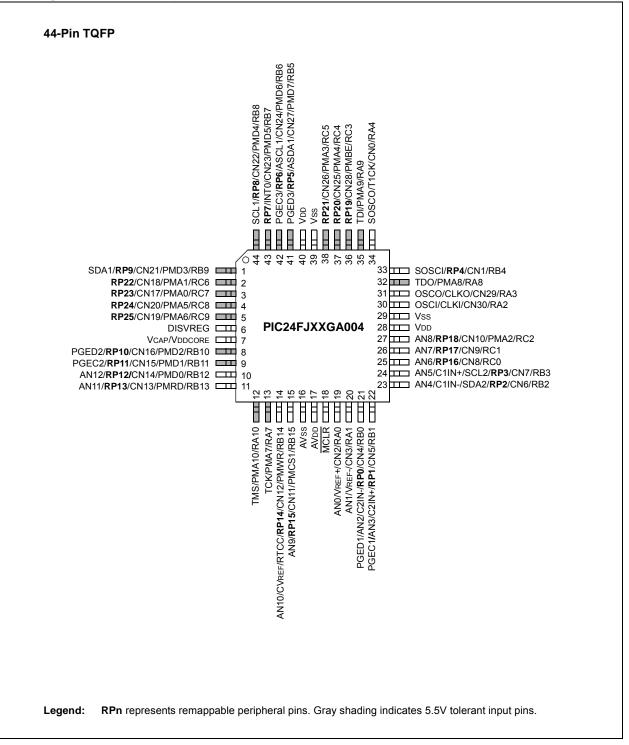


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj16ga004t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	1	Pin Number				
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
OSCI	9	6	30	Ι	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0	ANA	Main Oscillator Output Connection.
PGEC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator and ICSP™ Programming
PGEC2	22	19	9	I/O	ST	Clock.
PGEC3	14	12	42	I/O	ST	
PGED1	4	1	21	I/O	ST	In-Circuit Debugger/Emulator and ICSP Programming
PGED2	21	18	8	I/O	ST	Data.
PGED3	15	11	41	I/O	ST	
PMA0	10	7	3	I/O	ST/TTL	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	12	9	2	I/O	ST/TTL	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	—	_	27	0	—	Parallel Master Port Address (Demultiplexed Master
PMA3	—	_	38	0	—	modes).
PMA4	—	_	37	0	—	
PMA5	—	_	4	0	—	
PMA6	—	_	5	0	—	
PMA7	—	_	13	0	—	
PMA8	—	—	32	0	—	
PMA9	—	_	35	0	—	
PMA10	—	_	12	0	—	
PMA11	—	—	_	0	—	
PMA12	—	_	_	0	—	
PMA13	—	_	_	0	—	
PMBE	11	8	36	0	—	Parallel Master Port Byte Enable Strobe.
PMCS1	26	23	15	0	—	Parallel Master Port Chip Select 1 Strobe/Address Bit 14.
PMD0	23	20	10	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) o
PMD1	22	19	9	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	21	18	8	I/O	ST/TTL	
PMD3	18	15	1	I/O	ST/TTL	
PMD4	17	14	44	I/O	ST/TTL	
PMD5	16	13	43	I/O	ST/TTL	
PMD6	15	12	42	I/O	ST/TTL	
PMD7	14	11	41	I/O	ST/TTL	
PMRD	24	21	11	0	_	Parallel Master Port Read Strobe.
PMWR	25	22	14	0	_	Parallel Master Port Write Strobe.
Legend:	TTL = TTL inp ANA = Analog	level input/o	utput		l ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

5.5.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-4).

EXAMPLE 5-4: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

; Setup a p	pointer to data Program Memory		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;1	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;1	initialize a register with program memory address
MOV	#LOW_WORD_N, W2	;	
MOV	#HIGH_BYTE_N, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; Setup NVN MOV MOV	4CON for programming one word #0x4003, W0 W0, NVMCON	;	data Program Memory Set NVMOP bits to 0011
DISI	#5	;	Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	;	Write the key sequence
MOV	W0, NVMKEY		
MOV	#0xAA, W0		
MOV	W0, NVMKEY		
BSET	NVMCON, #WR	;	Start the write cycle
NOP		;	2 NOPs required after setting WR
NOP		;	

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
		—			_	—	LVDIE	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
_			_	CRCIE	U2ERIE	U1ERIE	_	
bit 7							bit C	
Legend:								
R = Reada	ble bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-9 bit 8	LVDIE: Low- 1 = Interrupt 0 = Interrupt	Noted: Read as 'C Voltage Detect I request is enabl request is not en	nterrupt Enat ed nabled	ble Status bit				
bit 7-4	•	nted: Read as '0						
bit 3	1 = Interrupt	C Generator Inter request is enabl request is not er	ed	bit				
bit 2	U2ERIE: UA	RT2 Error Interr	upt Enable bi	t				
		request is enabl request is not er						
bit 1	1 = Interrupt	U1ERIE: UART1 Error Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled						
bit 0	Unimpleme	nted: Read as 'o)'					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	_	_			_				
oit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0			
oit 7							bit 0			
_egend:										
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
		(ad. Daad as (o.'							
bit 15-7	-	ted: Read as '								
bit 6-4		SPI2 Event In								
	111 = Interru	ot is Priority 7 (highest priority	interrupt)						
	•									
	•									
	001 = Interrupt is Priority 1									
	000 = Interrupt source is disabled									
bit 3	Unimplemen	ted: Read as '	כ'							
bit 2-0	SPF2IP<2:0>	: SPI2 Fault In	terrupt Priority	bits						
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interru	ot is Priority 1								

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

REGISTER 7-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
	—	—	—	—	LVDIP2	LVDIP1	LVDIP0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-3	Unimplemen	ted: Read as '	כ'					
bit 2-0	0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits							
	111 = Interru	ot is Priority 7 (highest priority	interrupt)				

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1 ⁽¹⁾	RP25R0 ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		—	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	
bit 7			•	•			bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		ared	x = Bit is unknown			
bit 15-13	Unimplemen	ted: Read as '@	י'					

REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 15-13 Unimplemented: Read as '0

RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits⁽¹⁾ bit 12-8 (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits⁽¹⁾ bit 4-0 (see Table 10-3 for peripheral function numbers)

Note 1: These bits are only available on the 44-pin devices; otherwise, they read as '0'.

12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Timers"** (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in three modes:

- Two independent, 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- · Single 32-bit synchronous counter

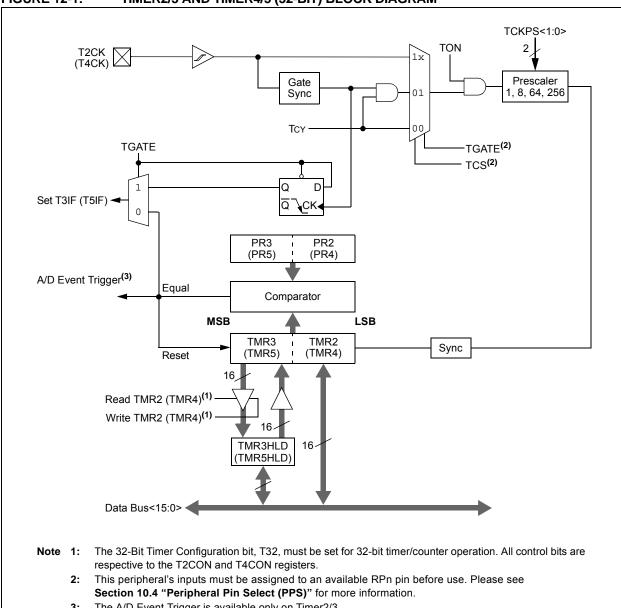
They also support these features:

- Timer gate operation
- Selectable prescaler settings
- · Timer operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period register match
- A/D Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger; this is implemented only with Timer3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in generic form in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

Note:	For 32-bit operation, T3CON and T5CON
	control bits are ignored. Only T2CON and
	T4CON control bits are used for setup and
	control. Timer2 and Timer4 clock and gate
	inputs are utilized for the 32-bit timer
	modules, but an interrupt is generated
	with the Timer3 or Timer5 interrupt flags.


To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to the external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the Timer3/5 Interrupt Enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

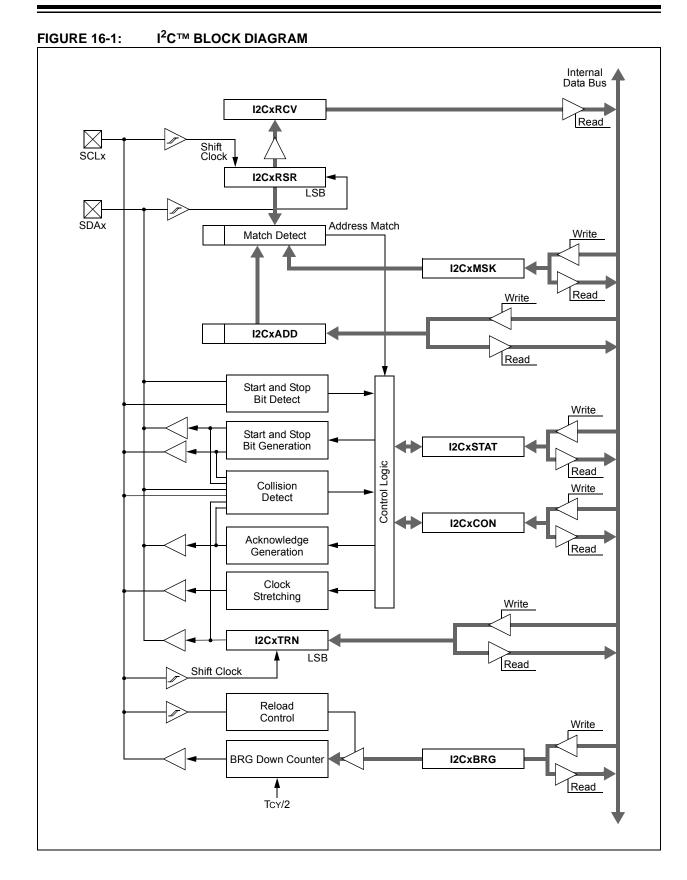
- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

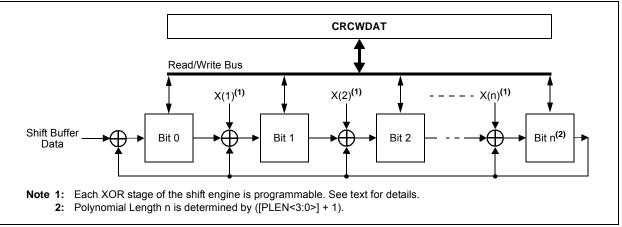
3: The A/D Event Trigger is available only on Timer2/3.

NOTES:

14.4 Output Compare Register


REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	OCSIDL	—	—	_	—	—
						bit 8
U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
	—	OCFLT	OCTSEL	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
						bit 0
	_	— OCSIDL	— OCSIDL — U-0 U-0 R-0, HC	- OCSIDL	- OCSIDL	− OCSIDL − − − − U-0 U-0 R-0, HC R/W-0 R/W-0 R/W-0


Legend:	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in HW only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare x Timer Select bit
	 1 = Timer3 is the clock source for Output Compare x 0 = Timer2 is the clock source for Output Compare x Refer to the device data sheet for specific time bases available to the output compare module.
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits ⁽¹⁾
	 111 = PWM mode on OCx; Fault pin, OCFx, is enabled⁽²⁾ 110 = PWM mode on OCx; Fault pin, OCFx, is disabled⁽²⁾ 101 = Initializes OCx pin low, generates continuous output pulses on OCx pin 100 = Initializes OCx pin low, generates single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initializes OCx pin high, compare event forces OCx pin low 001 = Initializes OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled
Note 1:	RPORx (OCx) must be configured to an available RPn pin. For more information, see Section 10.4

- "Peripheral Pin Select (PPS)".
- 2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.

FIGURE 20-2: CRC SHIFT ENGINE DETAIL

20.1 User Interface

20.1.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN<3:0> (CRCCON<3:0>) > 7 and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN<3:0> = 5, then the size of the data is PLEN<3:0> + 1 = 6. When loading data, the two MSbs of the data byte are ignored.

Once data is written into the CRCWDAT MSb (as defined by PLENx), the value of VWORD<4:0> (CRCCON<12:8>) increments by one. When CRCGO = 1 and VWORDx > 0, a word of data to be shifted is moved from the FIFO into the shift engine. When the data word moves from the FIFO to the shift engine, the VWORDx bits decrement by one. The serial shifter continues to receive data from the FIFO, shifting until the VWORDx bits reach 0. The last bit of data will be shifted through the CRC module (PLENx + 1)/2 clock cycles after the VWORDx bits reach 0. This is when the module is completed with the CRC calculation.

Therefore, for a given value of PLENx, it will take (PLENx + 1)/2 * VWORDx number of clock cycles to complete the CRC calculations.

When the VWORD<4:0> bits reach 8 (or 16), the CRCFUL bit will be set. When the VWORD<4:0> bits reach 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words, so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORDx bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORDx Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 20.1.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

20.1.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated. Note that the CRC calculation is not complete at this point; an additional time of (PLEN + 1)/2 clock cycles is required before the output can be read.

20.2 Operation in Power Save Modes

20.2.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

20.2.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

25.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	$f = \overline{f}$	1	1	N, Z
	COM	f,WREG	WREG = f	1	1	N, Z
	COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
-	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CPO	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
	CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FBCL	FFBCL	Ws, Wnd	Find Bit Change from left (MSb) Side	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit4,Wnd	Wnd = Logical Right Shift Wb by lit4	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Wis, Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
MOL	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU		{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		Wb,#lit5,Wnd	W3:W2 = f * WREG	1	1	None
	MUL	f	$f = \overline{f} + 1$			
NEG	NEG	f	_	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 27-16: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
OS50	Fplli	PLL Input Frequency Range	3 3	_	8 6	MHz MHz	ECPLL, HSPLL, XTPLL modes, -40°C \leq TA \leq +85°C ECPLL, HSPLL, XTPLL modes, -40°C \leq TA \leq +125°C
OS51	Fsys	PLL Output Frequency Range	8 8	_	32 24	MHz MHz	$\begin{array}{l} -40^\circ C \leq TA \leq +85^\circ C \\ -40^\circ C \leq TA \leq +125^\circ C \end{array}$
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	—	2	ms	
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-17: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: Operating temperature			2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended	
Param No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions
	TFRC	FRC Start-up Time	_	15	_	μS	
	TLPRC	LPRC Start-up Time	_	40	—	μS	

TABLE 27-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No. Characteristic		Min	Тур	Max	Units	Conditions			
F20	Internal FRC @ 8 MHz ⁽¹⁾	-2	_	2	%	+25°C			
		-5	—	5	%	$-40^\circ C \le T A \le +85^\circ C$	$3.0V \leq V\text{DD} \leq 3.6V$		
		-7		7	%	+125°C			
F21	LPRC @ 31 kHz ⁽²⁾	-15	_	15	%	+25°C			
		-15		15	%	$-40^\circ C \le T A \le +85^\circ C$	$3.0V \leq V\text{DD} \leq 3.6V$		
		-30		30	%	+125°C			

Note 1: Frequency calibrated at +25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.
 2: Change of LPRC frequency as VDD changes.

TABLE 27-20: A/D MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: Operating temperature			2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device	Supply	/			
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 2.0	—	Lesser of: VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V		
			Referen	ce Inpu	ts			
AD05	Vrefh	Reference Voltage High	AVss + 1.7	_	AVdd	V		
AD06	Vrefl	Reference Voltage Low	AVss	_	AVDD – 1.7	V		
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	_	1.25	mA	Measured during conversion, 3.3V, +25°C (Note 1)	
AD09	Zref	Reference Input Impedance	—	10k	—	Ω	Measured during sampling, 3.3V, +25°C	
			Analo	g Input				
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 1)	
AD11	Vin	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V		
AD12	Vinl	Absolute VINL Input Voltage	AVss - 0.3		AVDD/2	V		
AD13		Leakage Current	_	±1	±610	nA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$, Source Impedance = $2.5 \text{ k}\Omega$	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	—	2.5K	Ω	10-bit	
			A/D A	ccuracy	,			
AD20b	Nr	Resolution		10	_	bits		
AD21b	INL	Integral Nonlinearity	—	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD22b	DNL	Differential Nonlinearity	—	±1	<±1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD23b	Gerr	Gain Error	—	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD24b	Eoff	Offset Error		±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD25b	_	Monotonicity ⁽²⁾	_	_	_	_	Guaranteed	

Note 1: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

DC Characteristics	
Comparator Specifications	243
Comparator Voltage Reference	
Specifications	243
I/O Pin Input Specifications	240
I/O Pin Output Specifications	242
Idle Current (IIDLE)	236
Internal Voltage Regulator Specifications	243
Operating Current (IDD)	235
Power-Down Current (IPD)	238
Program Memory Specifications	242
Temperature and Voltage Specifications	234
Details on Individual Family Members	8
Development Support	219
Device Features (Summary)	9
DISVREG Pin	
Doze Mode	104

Е

Electrical Characteristics	
Absolute Maximum Ratings	231
Capacitive Loading Requirements on	
Output Pins	244
Thermal Operating Conditions	233
Thermal Packaging	233
V/F Graphs (Extended Temperature)	232
V/F Graphs (Industrial Temperature)	232
Equations	
A/D Conversion Clock Period	200
Baud Rate Reload Calculation	153
Calculating the PWM Period	136
Calculation for Maximum PWM Resolution	136
CRC Polynomial	189
Device and SPIx Clock Speed Relationship	150
UARTx Baud Rate with BRGH = 0	160
UARTx Baud Rate with BRGH = 1	160
Errata	6
External Oscillator Pins	

F

Flash Configuration Words	30, 209
Flash Program Memory	
and Table Instructions	47
Enhanced ICSP Operation	48
Operations	48
Programming Algorithm	
RTSP Operation	
Single-Word Programming	52

G

Getting Started Guidelines	17
	.,

I

I/O Port	s
----------	---

Analog Port Pins Configuration	
Input Change Notification	
Open-Drain Configuration	
Parallel (PIO)	
Peripheral Pin Select	
Pull-ups	

I²C

Baud Rate Setting When Operating as
Bus Master 153
Clock Rates 153
Master in a Single Master Environment
Communication151
Peripheral Remapping Options151
Reserved Addresses 153
Slave Address Masking 153
ICSP Operations
Analog and Digital Pins Configuration
ICSP Pins
Idle Mode
In-Circuit Debugger
00
In-Circuit Serial Programming (ICSP)
Instruction Set
Opcode Symbol Descriptions 224
Overview
Summary 223
Inter-Integrated Circuit. See I ² C.
Internet Address
Interrupts
Alternate Interrupt Vector Table (AIVT)
and Reset Sequence 59
Implemented Vectors
Interrupt Vector Table (IVT)
Registers
Setup and Service Procedures
Trap Vectors
Vector Table 60
J
J
J JTAG Interface
JTAG Interface
JTAG Interface
JTAG Interface
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 220
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 220
JTAG Interface 218 M M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221
JTAG Interface 218 JTAG Interface 218 M 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220
JTAG Interface 218 JTAG Interface 218 M 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N N
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N N
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N Near Data Space 32 O 32
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N N
JTAG Interface 218 M 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 220 N N Near Data Space 32 O Oscillator Configuration Clock Switching 100
JTAG Interface 218 M 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N 220 Near Data Space 32 O 32 Oscillator Configuration 100 Clock Switching 100 Sequence 101
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 Environment Software 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N Near Data Space 32 O O 32 O Sequence 101 CPU Clocking Scheme 96
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 Environment Software 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N Near Data Space 32 O 0 32 OLock Switching 100 Sequence 101 CPU Clocking Scheme 96 Initial Configuration on POR 96
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 Environment Software 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N N Near Data Space 32 O 0 Oscillator Configuration 100 Clock Switching 100 Sequence 101 CPU Clocking Scheme 96 Initial Configuration on POR 96 Oscillator Modes 96
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 Environment Software 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N Near Data Space 32 O 0 32 O 0 101 CPU Clocking Scheme 96 Initial Configuration on POR 96 Oscillator Modes 96 Output Compare 96
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 Environment Software 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 220 N Near Data Space 32 O O 32 O Sequence 101 CPU Clocking Scheme 96 Initial Configuration on POR 96 Oscillator Modes 96 Output Compare 96 Output Compare 32
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N Near Data Space 32 O O 32 O O 101 CPU Clocking Scheme 96 Initial Configuration on POR 96 Oscillator Modes 96 Output Compare 96 Owtput Compare 32 OWtput Compare 33 OWtput Compare 34 OWtput Compare 34 OWtput Mode 336
JTAG Interface 218 M Master Clear Pin (MCLR) 18 Microchip Internet Web Site 273 MPLAB ASM30 Assembler, Linker, Librarian 220 MPLAB Integrated Development 219 MPLAB PM3 Device Programmer 221 MPLAB REAL ICE In-Circuit Emulator System 221 MPLINK Object Linker/MPLIB Object Librarian 220 N N Near Data Space 32 O 32 O 0 Oscillator Configuration 100 Clock Switching 100 Sequence 101 CPU Clocking Scheme 96 Initial Configuration on POR 96 Oscillator Modes 96 Output Compare 96 Output Compare 135

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11