

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj16ga004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	16GA002	32GA002	48GA002	64GA002	16GA004	32GA004	48GA004	64GA004
Operating Frequency				DC – 3	82 MHz			
Program Memory (bytes)	16K	32K	48K	64K	16K	32K	48K	64K
Program Memory (instructions)	5,504	11,008	16,512	22,016	5,504	11,008	16,512	22,016
Data Memory (bytes)	4096		8192		4096		8192	
Interrupt Sources (soft vectors/NMI traps)	43 (39/4)							
I/O Ports	Ports A, B Ports A, B, C							
Total I/O Pins		21 35						
Timers:								
Total Number (16-bit)		5 ⁽¹⁾						
32-Bit (from paired 16-bit timers)					2			
Input Capture Channels	5 ⁽¹⁾							
Output Compare/PWM Channels	5 ⁽¹⁾							
Input Change Notification Interrupt	21 30							
Serial Communications:								
UART				2	(1)			
SPI (3-wire/4-wire)				2	(1)			
I ² C™				2	2			
Parallel Communications (PMP/PSP)				Ye	es			
JTAG Boundary Scan				Ye	es			
10-Bit Analog-to-Digital Module (input channels)		1	0			1	3	
Analog Comparators					2			
Remappable Pins		1	6			2	26	
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)						, iatch	
Instruction Set		76 Base	Instruction	s, Multiple	Address	ing Mode	Variations	
Packages	28-Pir	SPDIP/S	SOP/SOI	C/QFN		44-Pin Q	FN/TQFP	

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GA004 FAMILY

Note 1: Peripherals are accessible through remappable pins.

					01110													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	-	-	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		-	_	—	_		_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	—	_	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	001F
RPINR3	0686	_	—	_	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	_	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	1F1F
RPINR4	0688		—	_	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0		_	_	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	1F1F
RPINR7	068E		—	_	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0		_	_	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	1F1F
RPINR8	0690		—	_	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0		_	_	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	1F1F
RPINR9	0692		—	_	_	_	_	_	_		_	_	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	001F
RPINR11	0696		—	_	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		_	_	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	1F1F
RPINR18	06A4		—	_	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0		_	_	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	1F1F
RPINR19	06A6		—	_	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0		_	_	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	1F1F
RPINR20	06A8		—	_	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0		_	_	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	1F1F
RPINR21	06AA		—	—	_	_	_	—	—		_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	001F
RPINR22	06AC	_	—	—	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	-	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	1F1F
RPINR23	06AE	_	—	—	_	—	—	—	—	-	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	001F
RPOR0	06C0	_	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	-	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	-	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	-	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	—	—	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	-	—	—	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	—	—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	-	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	—	—		RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	—	—		RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	—	—	RP17R4 ⁽¹⁾	RP17R3 ⁽¹⁾	RP17R2 ⁽¹⁾	RP17R1 ⁽¹⁾	RP17R0 ⁽¹⁾	—	—		RP16R4 ⁽¹⁾	RP16R3 ⁽¹⁾	RP16R2 ⁽¹⁾	RP16R1 ⁽¹⁾	RP16R0 ⁽¹⁾	0000
RPOR9	06D2	—	—	—	RP19R4 ⁽¹⁾	RP19R3 ⁽¹⁾	RP19R2 ⁽¹⁾	RP19R1 ⁽¹⁾	RP19R0 ⁽¹⁾	_	—	_	RP18R4 ⁽¹⁾	RP18R3 ⁽¹⁾	RP18R2 ⁽¹⁾	RP18R1 ⁽¹⁾	RP18R0 ⁽¹⁾	0000
RPOR10	06D4	—	—	—	RP21R4 ⁽¹⁾	RP21R3 ⁽¹⁾	RP21R2 ⁽¹⁾	RP21R1 ⁽¹⁾	RP21R0 ⁽¹⁾	_	—	_	RP20R4 ⁽¹⁾	RP20R3 ⁽¹⁾	RP20R2 ⁽¹⁾	RP20R1 ⁽¹⁾	RP20R0 ⁽¹⁾	0000
RPOR11	06D6	—	—	—	RP23R4 ⁽¹⁾	RP23R3 ⁽¹⁾	RP23R2 ⁽¹⁾	RP23R1 ⁽¹⁾	RP23R0 ⁽¹⁾	_	—	_	RP22R4 ⁽¹⁾	RP22R3 ⁽¹⁾	RP22R2 ⁽¹⁾	RP22R1 ⁽¹⁾	RP22R0 ⁽¹⁾	0000
RPOR12	06D8	_	_	_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1(1)	RP25R0 ⁽¹⁾	_	_	_	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	0000

TABLE 4-21: PERIPHERAL PIN SELECT REGISTER MAP (PPS)

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 These bits are only available on 44-pin devices; otherwise, they read as '0'.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK

; Set up NVMCO	N for block erase operation		
MOV	#0x4042, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
; Init pointer	to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TBLWTL	WO, [WO]	;	Set base address of erase block
DISI	#5	;	Block all interrupts with priority <7
		;	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0			
	RTCIF	—	_	—	_	—	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0			
_	—	—	—	—	MI2C2IF	SI2C2IF	—			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimpleme	nted: Read as '	0'							
bit 14	RTCIF: Rea	I-Time Clock/Ca	lendar Interrup	ot Flag Status bi	it					
	1 = Interrupt	t request has oc	curred							
	0 = Interrupt	t request has no	t occurred							
bit 13-3	Unimpleme	nted: Read as '	0'							
bit 2	MI2C2IF: Ma	aster I2C2 Even	t Interrupt Flag	g Status bit						
	1 = Interrupt	t request has oc	curred							
	0 = Interrupt	t request has no	t occurred							
bit 1	SI2C2IF: Sla	ave I2C2 Event	Interrupt Flag S	Status bit						
	1 = Interrupt	t request has oc	curred							
	0 = Interrupt	t request has not	t occurred							
bit 0	Unimpleme	nted: Read as '	0'							

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL	—							
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
L:1 4 C		0 h:t								
DIT 15		Un bit								
	0 = Stops 16-	-bit Timer1								
bit 14	Unimplement	ted: Read as 'd)'							
bit 13	TSIDL: Timer	1 Stop in Idle M	lode bit							
	1 = Discontinues module operation when device enters Idle mode									
	0 = Continues module operation in Idle mode									
bit 12-7	Unimplemented: Read as '0'									
bit 6	TGATE: Time	r1 Gated Time	Accumulation	Enable bit						
	When TCS =	<u>1:</u>								
		orea.								
	1 = Gated tim	<u>o.</u> ne accumulatio	n is enabled							
	0 = Gated tim	ne accumulation	n is disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input (Clock Prescale	e Select bits						
	11 = 1:256									
	10 = 1:64									
	01 = 1.8 00 = 1:1									
bit 3	Unimplement	ted: Read as 'd)'							
bit 2	TSYNC: Time	er1 External Clo	ock Input Syncl	hronization Sele	ect bit					
	When TCS =	<u>1:</u>								
	1 = Synchroi	nizes external o	clock input							
	0 = Does not	t synchronize e	xternal clock II	nput						
	<u>vvnen TCS =</u> This bit is igno	<u>u:</u> pred.								
bit 1	TCS: Timer1 (Clock Source S	Select bit							
	1 = External	clock from T10	CK pin (on the	rising edae)						
	0 = Internal of	clock (Fosc/2)	г (т.т.т.	5 5 - 7						
bit 0	Unimplement	ted: Read as 'o)'							

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER											
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	—	TSIDL ⁽¹⁾	—	_	—	—	_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	_	_	TCS ^(1,2)	_				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is clea	ared	x = Bit is unkno	wn					
bit 15	TON: Timery	On bit ⁽¹⁾									
	1 = Starts 16	-bit Timery									
	0 = Stops 16	-bit Timery									
bit 14	Unimplemen	Unimplemented: Read as '0'									
bit 13	TSIDL: Timer	TSIDL: Timery Stop in Idle Mode bit ⁽¹⁾									
	1 = Discontinues module operation when device enters Idle mode										
	0 = Continues	s module opera	tion in Idle mo	de							
bit 12-7	Unimplemen	ted: Read as ')'								
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽¹⁾							
	When TCS =	<u>1:</u>									
	This bit is ign	ored.									
	<u>When $ICS = 1$</u>	<u>.0:</u> ne accumulatio	n is enabled								
	0 = Gated tin	ne accumulatio	n is disabled								
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescale	Select bits ⁽¹⁾							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3-2	Unimplemen	ted: Read as ')'								
bit 1	TCS: Timery	Clock Source S	Select bit ^(1,2)								
	1 = External 0 = Internal o	clock from pin, clock (Fosc/2)	TyCK (on the r	rising edge)							
bit 0	Unimplemen	ted: Read as ')'								
Note 1: V	Vhen 32-bit oper	ation is enable	d (T2CON<3>	or T4CON<3>	= 1), these bit	ts have no effect o	on Timery				

operation; all timer functions are set through T2CON and T4CON.

2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 15-1: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, SPIxTXB is full 0 = Transmit has started, SPIxTXB is empty
	In Standard Buffer mode: Automatically set in hardware when CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.
	In Enhanced Buffer mode: Automatically set in hardware when CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	1 = Receive is complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty
	In Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.
	In Enhanced Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See **Section 10.4** "**Peripheral Pin Select (PPS)**" for more information.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾			
UARTEN ⁽	1)	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0			
bit 15							bit 8			
R/C-0, HC	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL			
bit 7							bit 0			
· · ·										
Legend:	Legend: C = Clearable bit HC = Hardware Clearable bit									
R = Reada	ble bit	W = Writable I	Dit		nented bit, read					
-n = Value	at POR	'1' = Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkn	own			
bit 15	hit 15 LIADTEN: LIADTY Enchla hit(1)									
DIL 15	1 = 11	R IX Enabled: all LL	ΔRTx nins are	controlled by I	IARTy as defin	ed by LIEN<1.0)>			
	0 = UARTx is minimal	s disabled; all U	ARTx pins are	controlled by F	PORT latches;	UARTx power c	onsumption is			
bit 14	Unimplemen	ted: Read as 'o	,							
bit 13	USIDL: UAR	Tx Stop in Idle N	lode bit							
1 = Discontinues module operation when device enters Idle mode										
0 = Continues module operation in Idle mode										
bit 12	12 IREN: IrDA° Encoder and Decoder Enable bit ⁻⁷									
	 1 = IrDA encoder and decoder are enabled 0 = IrDA encoder and decoder are disabled 									
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t						
	$1 = \frac{UxRTS}{UxRTS} p$ 0 = UxRTS p	in in Simplex m in in Flow Cont	ode rol mode							
bit 10	Unimplemen	ted: Read as 'o	,							
bit 9-8	UEN<1:0>: U	ARTx Enable b	its ⁽³⁾							
	11 = UxTX, L	JxRX and BCLK	x p <u>ins are</u> ena	abled and used	; UxCTS pin is	controlled by P	ORT latches			
	10 = UxTX, L	JxRX, UxCTS a	nd UxRTS pin	s are enabled a	and used	controlled by P				
	00 = UxTX ar	d UxRX pins are	enabled and u	used; UxCTS an	d UxRTS/BCL	CX pins are contr	olled by PORT			
	latches	·								
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit					
	1 = UARTx w	/ill continue to sa	ample the UxR	X pin; interrupt	is generated o	n falling edge, b	it is cleared in			
	0 = No wake	-up is enabled	sing edge							
bit 6	LPBACK: UA	RTx Loopback	Mode Select I	bit						
	1 = Enables	Loopback mode	;							
	0 = Loopbac	k mode is disab	led							
bit 5	ABAUD: Auto	o-Baud Enable I	oit							
	1 = Enables	baud rate meas	urement on th	ne next characte	er – requires re	eception of a Sy	nc field (55h);			
	0 = Baud rate	e measurement	is disabled or	completed						
					Course of the second					
NOTE 1:	IT UARIEN = 1, th Section 10.4 "Pe	ne peripheral in eripheral Pin Se	puts and outpo elect (PPS)" f	uts must be cor or more information	nigured to an a ation.	ivaliable RPh pi	in. See			
2:	This feature is on	ly available for	the 16x BRG r	mode (BRGH =	0).					
	B., .,									

REGISTER 17-1: UXMODE: UARTX MODE REGISTER

3: Bit availability depends on pin availability.

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 ARPT7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 00h bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 0000 = Every half second 0001 = Every second 0010 = Every 10 seconds 0011 = Every minute 0100 = Every 10 minutes 0101 = Every hour 0110 = Once a day 0111 = Once a week 1000 = Once a month 1001 = Once a year (except when configured for February 29th, once every 4 years) 101x = Reserved; do not use 11xx = Reserved: do not use bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers; the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'. ALRMVAL<15:8>: 00 = ALRMMIN 01 = ALRMWD 10 = ALRMMNTH 11 = Unimplemented ALRMVAL<7:0>: 00 = ALRMSEC 01 = ALRMHR 10 = ALRMDAY 11 = Unimplemented bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits 11111111 = Alarm will repeat 255 more times 00000000 = Alarm will not repeat The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

© 2010-2013 Microchip Technology Inc.

NOTES:

REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 **= 1:2,048** 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 **IOL1WAY:** IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK (OSCCON<6>) bit can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK (OSCCON<6>) bit can be set and cleared as needed, provided the unlock sequence has been completed

bit 3 Reserved

- bit 2 I2C1SEL: I2C1 Pin Select bit
 - 1 = Use default SCL1/SDA1 pins
 - 0 = Use alternate SCL1/SDA1 pins

bit 1-0 **POSCMD<1:0:>** Primary Oscillator Configuration bits

- 11 = Primary oscillator is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = EC Oscillator mode is selected
- **Note 1:** These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). Refer to **Section 28.0 "Packaging Information"** in the device data sheet for the location and interpretation of product date codes.

REGISTER 24-3: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	_	—	—	—
bit 23							bit 16

U	U	R	R	R	R	R	R
—		FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8

R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Read-only	v bit	U = Unim	plemented bit
Logona.		y bit	0 011111	

bit 23-14 Unimplemented: Read as '1'

bit 13-6 FAMID<7:0>: Device Family Identifier bits

00010001 = PIC24FJ64GA004 family

- bit 5-0 DEV<5:0>: Individual Device Identifier bits
 - 000100 = PIC24FJ16GA002
 - 000101 = PIC24FJ32GA002
 - 000110 = PIC24FJ48GA002
 - 000111 = PIC24FJ64GA002
 - 001100 = PIC24FJ16GA004
 - 001101 = PIC24FJ32GA004
 - 001110 = PIC24FJ48GA004 001111 = PIC24FJ64GA004

24.3.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to '0'.

24.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit4,Wnd	Wnd = Arithmetic Right Shift Wb by lit4	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU,Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 26-2:	INSTRUCTION SET	OVERVIEW

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard Operating te	perating Concernmentation	ditions: 2.0V -40°0 -40°0	T to 3.6V (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended	
Parameter No.	Typical ⁽¹⁾	Мах	ax Units Conditions				
Power-Down	Current (IPD):	PMD Bits a	re Set, PMSL	.P Bit is '0' ⁽²⁾			
DC60	0.1	1	μA	-40°C			
DC60a	0.15	1	μA	+25°C			
DC60m	2.2	7.4	μA	+60°C	2.0V ⁽³⁾		
DC60b	3.7	12	μA	+85°C			
DC60j	15	50	μA	+125°C			
DC60c	0.2	1	μA	-40°C			
DC60d	0.25	1	μA	+25°C			
DC60n	2.6	15	μA	+60°C	2.5V ⁽³⁾	Base Power-Down Current ⁽⁵⁾	
DC60e	4.2	25	μA	+85°C			
DC60k	16	100	μΑ	+125°C			
DC60f	3.3	9	μA	-40°C			
DC60g	3.5	10	μΑ	+25°C			
DC60o	6.7	22	μΑ	+60°C	3.3∨ (4)		
DC60h	9	30	μA	+85°C			
DC60I	36	120	μΑ	+125°C			
DC61	1.75	3	μΑ	-40°C			
DC61a	1.75	3	μΑ	+25°C			
DC61m	1.75	3	μΑ	+60°C	2.0V ⁽³⁾		
DC61b	1.75	3	μΑ	+85°C			
DC61j	3.5	6	μΑ	+125°C			
DC61c	2.4	4	μΑ	-40°C			
DC61d	2.4	4	μΑ	+25°C			
DC61n	2.4	4	μΑ	+60°C	2.5V ⁽³⁾	Watchdog Timer Current: ∆IwDT ⁽⁵⁾	
DC61e	2.4	4	μΑ	+85°C			
DC61k	4.8	8	μΑ	+125°C		-	
DC61f	2.8	5	μΑ	-40°C			
DC61g	2.8	5	μΑ	+25°C			
DC61o	2.8	5	μΑ	+60°C	3.3∨ (4)		
DC61h	2.8	5	μΑ	+85°C			
DC61I	5.6	10	μΑ	+125°C			

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ64GA004 family AC characteristics and timing parameters.

TABLE 27-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	2.0V to 3.6V (unless otherwise stated)	
	Operating temperature	-40°C \leq TA \leq +85°C for Industrial	
AC CHARACTERISTICS		-40°C \leq TA \leq +125°C for Extended	
	Operating voltage VDD range as described in Section 27.1 "DC Characteristics" .		

FIGURE 27-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-14:	CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

NOTES: