E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga002-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables (IVT), located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the Interrupt Vector Tables is provided in **Section 7.1 "Interrupt Vector Table**".

4.1.3 FLASH CONFIGURATION WORDS

In PIC24FJ64GA004 family devices, the top two words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration registers. The addresses of the Flash Configuration Word for devices in the PIC24FJ64GA004 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 24.1** "**Configuration Bits**".

TABLE 4-1:FLASH CONFIGURATION
WORDS FOR PIC24FJ64GA004
FAMILY DEVICES

Device	Program Memory (K words)	Configuration Word Addresses
PIC24FJ16GA	5.5	002BFCh: 002BFEh
PIC24FJ32GA	11	0057FCh: 0057FEh
PIC24FJ48GA	16	0083FCh: 0083FEh
PIC24FJ64GA	22	00ABFCh: 00ABFEh

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

IIISW Addreese	most sign	ificant wor	a	least significant wo	JIU	PC Address
Address		۸ <u>ــــــ</u>				(ISW Address
		23	16	8	0	
000001h	0000000					000000h
000003h	0000000					000002h
000005h	00000000					000004h
000007h	0000000					000006h
	<u> </u>	\sim		~		
	Program Memory 'Phantom' Byte (read as '0')	/	Instruc	tion Width		

	S
	201
	0-201:
	ω
	Microchip
	Technolc
ç	Ž
	nc.

0

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Timer1 Per	iod Registe	r							FFFF
T1CON	0104	TON	_	TSIDL			_	_	_		TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS		0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Timer	3 Holding F	Register (for	32-bit time	r operation:	s only)						0000
TMR3	010A								Timer3	Register								0000
PR2	010C		Timer2 Period Register									FFFF						
PR3	010E								Timer3 Per	iod Registe	r							FFFF
T2CON	0110	TON	—	TSIDL			—		—	_	TGATE	TCKPS1	TCKPS0	T32	—	TCS		0000
T3CON	0112	TON	—	TSIDL			—		—	_	TGATE	TCKPS1	TCKPS0	—	—	TCS		0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holdir	g Register	(for 32-bit o	perations o	nly)						0000
TMR5	0118								Timer5	Register								0000
PR4	011A								Timer4 Per	iod Registe	r							FFFF
PR5	011C								Timer5 Per	iod Registe	r							FFFF
T4CON	011E	TON	_	TSIDL	_	_	—	_	_		TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							li	nput Captur	e 1 Registe	r							FFFF
IC1CON	0142	—	—	ICSIDL	—	—		—		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2BUF	0144							li	nput Captur	e 2 Registe	r							FFFF
IC2CON	0146	—	—	ICSIDL	—	—		—		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3BUF	0148							li	nput Captur	e 3 Registe	r							FFFF
IC3CON	014A	—	—	ICSIDL	—	—		—		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4BUF	014C							li	nput Captur	e 4 Registe	r							FFFF
IC4CON	014E	—	—	ICSIDL	—	—		—		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5BUF	0150							li	nput Captur	e 5 Registe	r							FFFF
IC5CON	0152	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: PARALLEL MASTER/SLAVE PORT REGISTER MAP

				_		-												
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000
PMADDR	0604	_	CS1	_	_	_	ADDR10	ADDR9	ADDR8	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	0000
PMDOUT1							Pa	rallel Port D	ata Out Reg	gister 1 (Buf	fers 0 and 1)						0000
PMDOUT2	0606						Pa	rallel Port D	ata Out Reg	gister 2 (Buf	fers 2 and 3)						0000
PMDIN1	0608						P	arallel Port I	Data In Regi	ster 1 (Buffe	ers 0 and 1)							0000
PMDIN2	060A						P	arallel Port I	Data In Regi	ster 2 (Buffe	ers 2 and 3)							0000
PMAEN	060C	_	PTEN14	_	_	_	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000
PMSTAT	060E	IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

	Dito	BIT 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
on ALRMPTR<1:0	>						xxxx
ARPT7 ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
d on RTCPTR<1:0>	>						xxxx
CAL7 CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000
on ARF d of CA	ALRMPTR<1:0 2T7 ARPT6 n RTCPTR<1:02 L7 CAL6	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 n RTCPTR<1:0> L7 CAL6 CAL5	ALRMPTR<1:0> ² T7 ARPT6 ARPT5 ARPT4 n RTCPTR<1:0> L7 CAL6 CAL5 CAL4	ALRMPTR<1:0> ² T7 ARPT6 ARPT5 ARPT4 ARPT3 n RTCPTR<1:0> L7 CAL6 CAL5 CAL4 CAL3	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 n RTCPTR<1:0> L7 CAL6 CAL5 CAL4 CAL3 CAL2	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 n RTCPTR<1:0> LT7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 n RTCPTR<1:0> LT7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632				_	_		—	—	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	_	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	_	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0	0040
CRCXOR	0642	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCDAT	0644								CRC Data Ir	nput Registe	er							0000
CRCWDAT	0646								CRC Res	ult Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

					01110													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	-	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		-	_	_	_		_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	—	_	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	001F
RPINR3	0686	_	—	_	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	_	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	1F1F
RPINR4	0688		—	_	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0		_	_	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	1F1F
RPINR7	068E		_	_	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0		_	_	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	1F1F
RPINR8	0690		—	_	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0		_	_	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	1F1F
RPINR9	0692		_	_	_	_	_	_	_		_	_	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	001F
RPINR11	0696		_	_	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		_	_	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	1F1F
RPINR18	06A4		_	_	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0		_	_	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	1F1F
RPINR19	06A6		_	_	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0		_	_	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	1F1F
RPINR20	06A8		_	_	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0		_	_	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	1F1F
RPINR21	06AA		—	—	_	_	_	—	—		_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	001F
RPINR22	06AC	_	—	—	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	-	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	1F1F
RPINR23	06AE	_	—	—	_	—	—	—	—	-	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	001F
RPOR0	06C0	_	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	-	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	-	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	-	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	—	—	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	-	—	—	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	—	—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	-	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	—	—		RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	—		RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	—	—	RP17R4 ⁽¹⁾	RP17R3 ⁽¹⁾	RP17R2 ⁽¹⁾	RP17R1 ⁽¹⁾	RP17R0 ⁽¹⁾	_	—		RP16R4 ⁽¹⁾	RP16R3 ⁽¹⁾	RP16R2 ⁽¹⁾	RP16R1 ⁽¹⁾	RP16R0 ⁽¹⁾	0000
RPOR9	06D2	—	—	—	RP19R4 ⁽¹⁾	RP19R3 ⁽¹⁾	RP19R2 ⁽¹⁾	RP19R1 ⁽¹⁾	RP19R0 ⁽¹⁾	_	—	_	RP18R4 ⁽¹⁾	RP18R3 ⁽¹⁾	RP18R2 ⁽¹⁾	RP18R1 ⁽¹⁾	RP18R0 ⁽¹⁾	0000
RPOR10	06D4	—	—	—	RP21R4 ⁽¹⁾	RP21R3 ⁽¹⁾	RP21R2 ⁽¹⁾	RP21R1 ⁽¹⁾	RP21R0 ⁽¹⁾	_	—	_	RP20R4 ⁽¹⁾	RP20R3 ⁽¹⁾	RP20R2 ⁽¹⁾	RP20R1 ⁽¹⁾	RP20R0 ⁽¹⁾	0000
RPOR11	06D6	—	—	—	RP23R4 ⁽¹⁾	RP23R3 ⁽¹⁾	RP23R2 ⁽¹⁾	RP23R1 ⁽¹⁾	RP23R0 ⁽¹⁾	_	—	_	RP22R4 ⁽¹⁾	RP22R3 ⁽¹⁾	RP22R2 ⁽¹⁾	RP22R1 ⁽¹⁾	RP22R0 ⁽¹⁾	0000
RPOR12	06D8	_	_	_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1(1)	RP25R0 ⁽¹⁾	_	_	_	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	0000

TABLE 4-21: PERIPHERAL PIN SELECT REGISTER MAP (PPS)

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 These bits are only available on 44-pin devices; otherwise, they read as '0'.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ64GA004 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

PIC24FJ64GA004 FAMILY

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
_	—	_	—	—	RTCIP2	RTCIP1	RTCIP0	
bit 15		·		·			bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	—	—	_			
bit 7		·	•	·			bit 0	
Legend:								
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-11	Unimplemen	ted: Read as '	0'					
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck/Calendar Ir	nterrupt Priority	bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)				
	•							
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abied					
bit 7-0	Unimplemen	ted: Read as '	0'					

REGISTER 7-28: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

8.4.3 SECONDARY OSCILLATOR LOW-POWER OPERATION

Note:	This feature is implemented only on
	PIC24FJ64GA004 family devices with a
	major silicon revision level of B or later
	(DEVREV register value is 3042h or
	greater).

The Secondary Oscillator (SOSC) can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low gain, low-power state. By default, the oscillator uses a higher gain setting, and therefore, requires more power. The Secondary Oscillator Mode Selection bits, SOSCSEL<1:0> (CW2<12:11>), determine the oscillator's power mode.

When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator will start up and oscillate properly. The lower gain of this mode makes the SOSC more sensitive to noise and requires a longer start-up time.

8.4.4 OSCILLATOR LAYOUT

On low pin count devices, such as those in the PIC24FJ64GA004 family, due to pinout limitations, the SOSC is more susceptible to noise than other PIC24F devices. Unless proper care is taken in the design and layout of the SOSC circuit, it is possible for inaccuracies to be introduced into the oscillator's period.

In general, the crystal circuit connections should be as short as possible. It is also good practice to surround the crystal circuit with a ground loop or ground plane. For more detailed information on crystal circuit design, please refer to the "*PIC24F Family Reference Manual*", "**Oscillator**" (DS39700) and Microchip Application Notes: *AN826*, "*Crystal Oscillator Basics and Crystal Selection for rfPIC*[®] and *PICmicro*[®] *Devices*" (DS00826) and *AN849*, "Basic *PICmicro*[®] *Oscillator Design*" (DS00849).

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"Power-Saving Features"* (DS39698). Additional power-saving tips can also be found in Appendix B: "Additional Guidance for PIC24FJ64GA004 Family Applications" of this document.

The PIC24FJ64GA004 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

9.2.1 SLEEP MODE

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the Input Change Notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

Additional power reductions can be achieved by disabling the on-chip voltage regulator whenever Sleep mode is invoked. This is done by clearing the PMSLP bit (RCON<8>). Disabling the regulator adds an additional delay of about 190 μ s to the device wake-up time. It is recommended that applications not using the voltage regulator leave the PMSLP bit set. For additional details on the regulator and Sleep mode, see **Section 24.2.5 "Voltage Regulator Standby Mode"**.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled.
- · On any form of device Reset.
- On a WDT time-out.

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	; 1	Put	the	device	into	SLEEP mode
PWRSAV	#IDLE_MODE	; 1	Put	the	device	into	IDLE mode

Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0.

See Section 10.4.4.1 "Control Register

Lock" for a specific command sequence.

10.5 Peripheral Pin Select Registers

The PIC24FJ64GA004 family of devices implements a total of 27 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (14)
- Output Remappable Peripheral Registers (13)

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—	—		—
bit 7							bit 0
U-0 — bit 7	U-0 —	U-0	U-0 —	U-0 —	U-0	U-0	U-0 — t

Note:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits
bit 7-0	Unimplemented: Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 INT2R<4:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

PIC24FJ64GA004 FAMILY

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits

REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits

REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn Pin bits

REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
11.0	11.0	11.0					

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
L:100	DD40D 4.0 Design and Outsut Fun

bit 12-8	RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits
	(see Table 10-3 for peripheral function numbers)

- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-3 for peripheral function numbers)

NOTES:

14.4 Output Compare Register

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	OCSIDL		—			—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	OCFLT	OCTSEL	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	1 = PWM Fault condition has occurred (cleared in HW only)
	0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare x Timer Select bit
	1 = Timer3 is the clock source for Output Compare x
	0 = Timer2 is the clock source for Output Compare x
	Refer to the device data sheet for specific time bases available to the output compare module.
bit 2-0	OCM<2:0>: Output Compare x Mode Select bits ⁽¹⁾
	111 = PWM mode on OCx; Fault pin, OCFx, is enabled ⁽²⁾
	110 = PWM mode on OCx; Fault pin, OCFx, is disabled ⁽²⁾
	101 = Initializes OCx pin low, generates continuous output pulses on OCx pin
	100 = Initializes OCx pin low, generates single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initializes OCX pin high, compare event forces OCX pin low
	0.01 = 1 initializes OCX pin low, compare event forces OCX pin high
	000 - Output compare channel is disabled
Note 1:	RPORx (OCx) must be configured to an available RPn pin. For more information, see Section 10.4

- "Peripheral Pin Select (PPS)".
- 2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.

REGISTER 15-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - ... 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **3:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 4: If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	SPIFPOL	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SPIFE	SPIBEN
bit 7							bit 0

Legend:						
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'		
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 15	FRMEN: Fran	med SPIx Support bit				
	1 = Framed S 0 = Framed S	SPIx support is enabled SPIx support is disabled				
bit 14	SPIFSD: SPI	x Frame Sync Pulse Direction	n Control on SSx Pin bit			
1 = Frame sync pulse input (slave) 0 = Frame sync pulse output (master)						
bit 13	SPIFPOL: SF	Plx Frame Sync Pulse Polarit	y bit (Frame mode only)			
	1 = Frame sy 0 = Frame sy	nc pulse is active-high nc pulse is active-low				
bit 12-2	Unimplemen	ited: Read as '0'				
bit 1	SPIFE: SPIx	Frame Sync Pulse Edge Sele	ect bit			
	 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock 					
bit 0	SPIBEN: SPI	x Enhanced Buffer Enable bi	t			
	1 = Enhance	d Buffer is enabled				
	0 = Enhance	d Buffer is disabled (Legacy r	node)			

© 2010-2013 Microchip Technology Inc.

PIC24FJ64GA004 FAMILY

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN		PSIDL	ADRMUX1 ⁽¹⁾	ADRMUX0 ⁽¹⁾	PTBEEN	PTWREN	PTRDEN
bit 15							bit 8
		(6)		(6)			
R/W-0	R/W-0	R/W-0 ⁽²⁾	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP
bit 7							bit 0
Levend							
Legena:	la hit	\// = \//ritabla	h:t		opted bit read	1 ~~ '0'	
		vv = vvritable	DIL +	0 = 0 miniplem	ented bit, read	v – Ritic unkn	
	IFUR	I – DILISSE	L		lieu		IOWIT
hit 15	DMDEN · DM	P Enable hit					
bit 10	1 = PMP is e	enabled					
	0 = PMP is c	disabled, no off	-chip access is	performed			
bit 14	Unimplemer	nted: Read as	0'				
bit 13	PSIDL: PMP	Stop in Idle Mo	ode bit				
	1 = Disconti	nues module o	peration when c	levice enters Idl	le mode		
		es module oper	ation in Idle mo	de	1)		
bit 12-11	ADRMUX<1:	: 0>: Address/D	ata Multiplexing	Selection bits	')		
	11 = Reserve 10 = All 16 b	eu its of address a	are multiplexed	on the PMD<7.	0> nins		
	01 = Lower 8	B bits of addres	s are multiplex	ed on the PMD	<7:0> pins, up	per 3 bits are r	multiplexed on
	PMA<1	0:8>					
h:1 10		s and data app	ear on separate	e pins	(mada)		
DICTO	1 - DMRE pr	VIP Byte Enabled	e Port Enable bi	t (16-Bit Master	mode)		
	0 = PMBE pc	ort is disabled					
bit 9	PTWREN: P	MP Write Enab	le Strobe Port E	Enable bit			
	1 = PMWR/F	PMENB port is	enabled				
	0 = PMWR/F	PMENB port is	disabled				
bit 8	PTRDEN: PN	MP Read/Write	Strobe Port En	able bit			
	1 = PMRD/F	MWR port is e	nabled				
hit 7-6	0 - FINRD/F	hin Select Fun					
	11 = Reserve	ad					
	10 = PMCS1	functions as c	hip set				
	01 = Reserve	ed					
	00 = Reserve	ed	(2)				
bit 5	ALP: Addres	s Latch Polarity	y bit ⁽²⁾				
	$\perp = Active-hl0 = Active-hl$	ign <u>(PiviALL</u> an w (PMALL and	U PIVIALH) I PMALH)				
bit 4	Unimplemer	nted: Read as	···· ··· ··· ···				
bit 3	CS1P: Chip	Select 1 Polarit	y bit ⁽²⁾				
	1 = Active-hi	igh (PMCS1/PI	, MCS1)				
	0 = Active-lo	w (PMCS1/PN	ICS1)				
Note 1: P	MA<10:2> hits	are not availab	le on 28-pin dev	/ices.			

REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER

2: These bits have no effect when their corresponding pins are used as address lines.

PIC24FJ64GA004 FAMILY

REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown			
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit 0
X7	X6	X5	X4	X3	X2	X1	_
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
bit 15							bit 8
X15	X14	X13	X12	X11	X10	X9	X8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

NOTES:

REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 **IOL1WAY:** IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK (OSCCON<6>) bit can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK (OSCCON<6>) bit can be set and cleared as needed, provided the unlock sequence has been completed

bit 3 Reserved

- bit 2 I2C1SEL: I2C1 Pin Select bit
 - 1 = Use default SCL1/SDA1 pins
 - 0 = Use alternate SCL1/SDA1 pins

bit 1-0 **POSCMD<1:0:>** Primary Oscillator Configuration bits

- 11 = Primary oscillator is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = EC Oscillator mode is selected
- **Note 1:** These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). Refer to **Section 28.0 "Packaging Information"** in the device data sheet for the location and interpretation of product date codes.

REGISTER 24-3: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	_	—	—	—
bit 23							bit 16

U	U	R	R	R	R	R	R
—		FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8

R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Read-only	v hit	U = Unim	plemented bit
Logona.	It Itouu on	y bit	0 011111	

bit 23-14 Unimplemented: Read as '1'

bit 13-6 FAMID<7:0>: Device Family Identifier bits

00010001 = PIC24FJ64GA004 family

- bit 5-0 DEV<5:0>: Individual Device Identifier bits
 - 000100 = PIC24FJ16GA002
 - 000101 = PIC24FJ32GA002
 - 000110 = PIC24FJ48GA002
 - 000111 = PIC24FJ64GA002
 - 001100 = PIC24FJ16GA004
 - 001101 = PIC24FJ32GA004
 - 001110 = PIC24FJ48GA004 001111 = PIC24FJ64GA004

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions
- File History and Bug Tracking:
- · Local file history feature
- Built-in support for Bugzilla issue tracker