

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga002-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_	_	-	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	SOSCEN	OSWEN	(Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3140
OSCTUN	0748	_		_		_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by the type of Reset.

TABLE 4-23: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	—	—	—	_	ERASE	—	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	_	_	—	_	_	_	_	_				NVMKE	Y<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for a POR only. The value on other Reset states is dependent on the state of the memory write or erase operations at the time of Reset.

TABLE 4-24: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADC1MD	0000
PMD2	0772	_	_	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCPMD	_	_	_	_	_	I2C2MD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCON :	for row programming operations		
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a pointe	er to the first program memory	loc	ation to be written
;	program memory	selected, and writes enabled		
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the TB	LWT instructions to write the	latc	hes
;	Oth_program_wo	rd		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	<pre>lst_program_wo</pre>	rd		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program_wo	rd		
	MOV	#LOW_WORD_2, W2	;	
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program_w	ord		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BYTE_31, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; 2 NOPs required after setting WR
NOP		;
BTSC	NVMCON, #15	; Wait for the sequence to be completed
BRA	\$-2	;

REGISTER 7-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 1	REGISTER 7-29:	IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16
---	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_	U1ERIP2	U1ERIP1	U1ERIP0		—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'			
-n = Value a	alue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
bit 15	Unimplemen	ted: Read as '	כי						
bit 14-12	CRCIP<2:0>: CRC Generator Error Interrupt Priority bits								
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)							
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 11	Unimplemen	ted: Read as '	כי						
bit 10-8	U2ERIP<2:0	>: UART2 Error	Interrupt Prior	rity bits					
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)					
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 7	Unimplemen	ted: Read as '	כי						
bit 6-4	U1ERIP<2:0>: UART1 Error Interrupt Priority bits								
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)					
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 3-0	Unimplemen	ted: Read as '	כי						

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS Control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 10-9: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	U1CTSR<4:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	U1RXR<4:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 U2CTSR<4:0>: Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 U2RXR<4:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits

12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Timers"** (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 and Timer4/5 operate in three modes:

- Two independent, 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- · Single 32-bit synchronous counter

They also support these features:

- Timer gate operation
- Selectable prescaler settings
- · Timer operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period register match
- A/D Event Trigger (Timer2/3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger; this is implemented only with Timer3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in generic form in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

Note:	For 32-bit operation, T3CON and T5CON
	control bits are ignored. Only T2CON and
	T4CON control bits are used for setup and
	control. Timer2 and Timer4 clock and gate
	inputs are utilized for the 32-bit timer
	modules, but an interrupt is generated
	with the Timer3 or Timer5 interrupt flags.

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to the external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the Timer3/5 Interrupt Enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

FIGURE 14-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

4: This peripheral's inputs and outputs must be assigned to an available RPn pin before use. Please see Section 10.4 "Peripheral Pin Select (PPS)" for more information.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	_	DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾	
bit 15				•		•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEN ⁽⁴	⁴⁾ CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	
bit 7								
Legend								
R = Read	able bit	W = Writable	bit	U = Unimplem	nented hit read	l as '0'		
-n = Value	e at POR	'1' = Bit is set	bit	0' = Bit is clea	ared	x = Bit is unkr	างพท	
iii value		1 Bit lo cot						
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12	DISSCK: Disa	ables SCKx Pir	n bit (SPI Maste	er modes only)	[1]			
	1 = Internal S	SPI clock is dis	abled; pin func	tions as I/O				
L:1 44	0 = Internal S	SPI clock is ena	abled					
DICT		ables SDOX Pl	n Dit(-) / the module: r	in functions as				
	0 = SDOx pir	n is controlled b	by the module					
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ct bit				
	1 = Commun	ication is word	-wide (16 bits)					
1.1.0		ication is byte-	wide (8 bits)					
DIT 9	SNIP: SPIX D	ata input Samp	Die Phase bit					
	1 = Input dat	<u>.</u> a is sampled a	t end of data ou	utput time				
	0 = Input dat	a is sampled a	t middle of data	a output time				
	<u>Slave mode:</u> SMP must be	cleared when	SPIx is used ir	Slave mode.				
bit 8	CKE: SPIx C	lock Edge Sele	ct bit ⁽³⁾					
	1 = Serial ou	tput data chang	ges on transitio	n from active c	lock state to Id	le clock state (see bit 6)	
	0 = Serial ou	tput data chang	ges on transitio	n from Idle cloo	ck state to activ	e clock state (see bit 6)	
bit /	35EN: Slave	Select Enable	bit (Slave mod	e)(*/				
	$0 = \frac{33x}{SSx}$ pin i	s not used by t	he module; pin	is controlled by	y port function			
bit 6	CKP: Clock F	Polarity Select b	bit					
	1 = Idle state	for the clock is	s a high level; a	active state is a	low level			
hit E		tor the clock is	s a low level; a	ctive state is a i	nign level			
DIUD	1 = Master m	nde						
	0 = Slave mo	ode						
Note 1:	If DISSCK = 0, S Select (PPS)" for	CKx must be c r more informa	onfigured to an tion.	available RPn	pin. See Secti	on 10.4 "Perip	oheral Pin	
2:	If DISSDO = 0, S Select (PPS)" for	DOx must be o r more informa	onfigured to ar tion.	n available RPn	pin. See Sect	ion 10.4 "Peri	pheral Pin	
3:	The CKE bit is no SPI modes (FRM	ot used in the F EN = 1).	ramed SPI mo	des. The user s	hould program	this bit to '0' fo	or the Framed	
4:	If SSEN = 1, SSx (PPS)" for more i	must be confignformation.	gured to an ava	iilable RPn pin.	See Section 1	10.4 "Peripher	al Pin Select	

FIGURE 15-3: SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 5	D/A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from slave
	0 = Write – Indicates data transfer is input to slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	U = Receive is not complete, I2CXRCV is empty Hardware is set when I2CXRCV is written with received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes I2CxTRN. Hardware is clear at completion of data transmission.

Note 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data, either as a slave or a master. Reading ACKSTAT after receiving address or data bytes returns an invalid result.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

AMSK<9:0>: Mask for Address Bit x Select bits

- 1 = Enables masking for bit x of incoming message address; bit match is not required in this position
- 0 = Disables masking for bit x; bit match is required in this position

bit 9-0

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1' bit 3 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode) bit 2-1 PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity bit 0 STSEL: Stop Bit Selection bit 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 3: Bit availability depends on pin availability.

REGISTER 17-3: UXTXREG: UARTX TRANSMIT REGISTER

U-x	U-x	U-x	U-x	U-x	U-x	U-x	W-x
—	—	—	—	—	—	—	UTX8
bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8 **UTX8:** UARTx Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UTX<7:0>: UARTx Data of the Transmitted Character bits

REGISTER 17-4: UXRXREG: UARTX RECEIVE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
—	—	—	—	—	—	—	URX8
bit 15							bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8 URX8: UARTx Data of the Received Character bit (in 9-bit mode)

bit 7-0 URX<7:0>: UARTx Data of the Received Character bits

REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 2 BEP: Byte Enable Polarity bit 1 = Byte enable is active-high (PMBE) 0 = Byte enable is active-low (PMBE) bit 1 WRSP: Write Strobe Polarity bit For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe is active-high (PMWR) 0 = Write strobe is active-low (PMWR) For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe is active-high (PMENB) 0 = Enable strobe is active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe is active-high (PMRD) 0 = Read strobe is active-low (PMRD)For Master Mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe is active-high (PMRD/PMWR) 0 = Read/write strobe is active-low (PMRD/PMWR)
- **Note 1:** PMA<10:2> bits are not available on 28-pin devices.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 18-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	CS1	—	—	—	ADDR10 ⁽¹⁾	ADDR9 ⁽¹⁾	ADDR8 ⁽¹⁾
bit 15							bit 8

| R/W-0 |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| ADDR7 ⁽¹⁾ | ADDR6 ⁽¹⁾ | ADDR5 ⁽¹⁾ | ADDR4 ⁽¹⁾ | ADDR3 ⁽¹⁾ | ADDR2 ⁽¹⁾ | ADDR1 ⁽¹⁾ | ADDR0 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 14 CS1: Chip Select 1 bit
 - 1 = Chip Select 1 is active
 - 0 = Chip Select 1 is inactive
- bit 13-11 Unimplemented: Read as '0'
- bit 10-0 ADDR<10:0>: Parallel Port Destination Address bits⁽¹⁾
- **Note 1:** PMA<10:2> bits are not available on 28-pin devices.

REGISTER 18-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	PTEN14	—	—	—	PTEN10 ⁽¹⁾	PTEN9 ⁽¹⁾	PTEN8 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN7 ⁽¹⁾	PTEN6 ⁽¹⁾	PTEN5 ⁽¹⁾	PTEN4 ⁽¹⁾	PTEN3 ⁽¹⁾	PTEN2 ⁽¹⁾	PTEN1	PTEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	PTEN14: PMCS1 Strobe Enable bit
	1 = PMCS1 pin functions as chip select0 = PMCS1 pin functions as port I/O
bit 13-11	Unimplemented: Read as '0'
bit 10-2	PTEN<10:2>: PMP Address Port Enable bits ⁽¹⁾
	1 = PMA<10:2> function as PMP address lines0 = PMA<10:2> function as port I/O
bit 1-0	PTEN<1:0>: PMALH/PMALL Strobe Enable bits
	 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL 0 = PMA1 and PMA0 pads functions as port I/O

Note 1: PMA<10:2> bits are not available on 28-pin devices.

FIGURE 21-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

25.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions						
Power-Down	Current (IPD):	PMD Bits a	re Set, PMSL	.P Bit is '0' ⁽²⁾						
DC60	0.1	1	μA	-40°C						
DC60a	0.15	1	μA	+25°C						
DC60m	2.2	7.4	μA	+60°C	2.0V ⁽³⁾					
DC60b	3.7	12	μA	+85°C						
DC60j	15	50	μA	+125°C						
DC60c	0.2	1	μA	-40°C						
DC60d	0.25	1	μA	+25°C						
DC60n	2.6	15	μA	+60°C	2.5V ⁽³⁾	Base Power-Down Current ⁽⁵⁾				
DC60e	4.2	25	μA	+85°C						
DC60k	16	100	μΑ	+125°C						
DC60f	3.3	9	μA	-40°C						
DC60g	3.5	10	μΑ	+25°C						
DC60o	6.7	22	μΑ	+60°C	3.3∨ (4)					
DC60h	9	30	μA	+85°C						
DC60I	36	120	μΑ	+125°C						
DC61	1.75	3	μΑ	-40°C						
DC61a	1.75	3	μΑ	+25°C						
DC61m	1.75	3	μΑ	+60°C	2.0V ⁽³⁾					
DC61b	1.75	3	μΑ	+85°C						
DC61j	3.5	6	μΑ	+125°C						
DC61c	2.4	4	μΑ	-40°C						
DC61d	2.4	4	μΑ	+25°C						
DC61n	2.4	4	μΑ	+60°C	2.5V ⁽³⁾	Watchdog Timer Current: ∆IwDT ⁽⁵⁾				
DC61e	2.4	4	μΑ	+85°C						
DC61k	4.8	8	μΑ	+125°C		-				
DC61f	2.8	5	μΑ	-40°C						
DC61g	2.8	5	μΑ	+25°C						
DC61o	2.8	5	μΑ	+60°C	3.3∨ (4)					
DC61h	2.8	5	μΑ	+85°C						
DC61I	5.6	10	μΑ	+125°C						

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 27-15: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions:2.0 to 3.6V (unless otherwise)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industri $-40^{\circ}C \le TA \le +125^{\circ}C$ for External					
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	Fosc	External CLKI Frequency	DC		32	MHz	EC, $-40^{\circ}C \le TA \le +85^{\circ}C$
		(External clocks allowed	4		8	MHz	ECPLL, $-40^{\circ}C \le TA \le +85^{\circ}C$
		only in EC mode)	DC		24	MHz	EC, $-40^{\circ}C \le TA \le +125^{\circ}C$
			4	—	6	MHz	ECPLL, $-40^{\circ}C \le TA \le +125^{\circ}C$
		Oscillator Frequency	3	_	10	MHz	ХТ
			3		8	MHz	XTPLL, $-40^{\circ}C \le TA \le +85^{\circ}C$
			10		32	MHz	HS, $-40^{\circ}C \le TA \le +85^{\circ}C$
			31		33	kHz	SOSC
			3		6	MHz	XTPLL, $-40^{\circ}C \le TA \le +125^{\circ}C$
			10	—	24	MHz	HS, $-40^{\circ}C \le TA \le +125^{\circ}C$
OS20	Tosc	Tosc = 1/Fosc	_		_		See Parameter OS10 for
							Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns	
OS30	TosL, TosH	External Clock In (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC
OS31	TosR, TosF	External Clock In (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾		6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

TABLE 27-16: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

AC CHARACTERISTICS			Standard Operating Conditions: 2. Operating temperature -4 -4 -4				2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended	
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
OS50	Fplli	PLL Input Frequency Range	3 3	_	8 6	MHz MHz	ECPLL, HSPLL, XTPLL modes, -40°C \leq TA \leq +85°C ECPLL, HSPLL, XTPLL modes, -40°C \leq TA \leq +125°C	
OS51	Fsys	PLL Output Frequency Range	8 8	—	32 24	MHz MHz	$\begin{array}{l} -40^{\circ}C \leq TA \leq +85^{\circ}C \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \end{array}$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	—	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-17: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating	Operating temperatu	Conditions: re	2.0V to 3.6V (unless otherwise stated) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions	
-	TFRC	FRC Start-up Time	_	15	—	μS		
	TLPRC	LPRC Start-up Time	—	40	—	μS		

TABLE 27-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
F20	Internal FRC @ 8 MHz ⁽¹⁾	-2		2	%	+25°C		
		-5		5	%	$-40^\circ C \le T A \le +85^\circ C$	$3.0V \leq V\text{DD} \leq 3.6V$	
		-7		7	%	+125°C		
F21	LPRC @ 31 kHz ⁽²⁾	-15		15	%	+25°C		
		-15		15	%	$-40^\circ C \le T A \le +85^\circ C$	$3.0V \leq V\text{DD} \leq 3.6V$	
		-30	_	30	%	+125°C		

Note 1: Frequency calibrated at +25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.
 2: Change of LPRC frequency as VDD changes.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
Fror	1: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Арр	ication (optional):						
Wou	ld you like a reply?YN						
Dev	ce: PIC24FJ64GA004 Family	Literature Number: DS39881E					
Que	stions:						
1.	What are the best features of this document?						
2.	2. How does this document meet your hardware and software development needs?						
3.	. Do you find the organization of this document easy to follow? If not, why?						
4.	What additions to the document do you think would enhance the structure and subject?						
5.	What deletions from the document could be made without affecting the overall usefulness?						
6.	Is there any incorrect or misleading information (what and where)?						
•							
7.	How would you improve this document?						
•							