

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga002t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		_	_	—	_	TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	TRISA8 ⁽¹⁾	TRISA7 ⁽¹⁾	_	_	TRISA4	TRISA3 ⁽²⁾	TRISA2 ⁽³⁾	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	—		RA10 ⁽¹⁾	RA9 ⁽¹⁾	RA8 ⁽¹⁾	RA7 ⁽¹⁾	_		RA4	RA3 ⁽²⁾	RA2 ⁽³⁾	RA1	RA0	0000
LATA	02C4	_	_	_	—		LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	LATA8 ⁽¹⁾	LATA7 ⁽¹⁾	_		LATA4	LATA3 ⁽²⁾	LATA2 ⁽³⁾	LATA1	LATA0	0000
ODCA	02C6	_	_	_	_	_	ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	ODA8 ⁽¹⁾	ODA7 ⁽¹⁾	_	_	ODA4	ODA3 ⁽²⁾	ODA2 ⁽³⁾	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on 28-pin devices; read as '0'.

2: These bits are only available when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise, read as '0'.

3: These bits are only available when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00 or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	0000
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC ⁽¹⁾	02D0	_	—	_		_	-	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC ⁽¹⁾	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	0000
LATC ⁽¹⁾	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	0000
ODCC ⁽¹⁾	02D6	—	_	_	—	_		ODC9	OSC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.Bits are not available on 28-pin devices; read as '0'.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC									_	_					RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE	4-Z1:	PERI	PHERA		SELEC	I REGIS		(223)										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	_		INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	_	_	_	—	_	_	_	1F00
RPINR1	0682	_	_		_	_	_	_	_	_	_		INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	001F
RPINR3	0686	_	_		T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_		T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	1F1F
RPINR4	0688	—	—	_	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0	—	—	-	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	1F1F
RPINR7	068E	—	—	_	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	—	—	-	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	1F1F
RPINR8	0690	—	—	_	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	—	—	-	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	1F1F
RPINR9	0692	_	_	_	_	—	—	—	—	—	—	_	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	001F
RPINR11	0696	_	_	_	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	_	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	1F1F
RPINR18	06A4	—	—	_	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	—	—	_	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	1F1F
RPINR19	06A6	—	—	_	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—	—	_	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	1F1F
RPINR20	06A8	—	—	_	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—	—	_	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	1F1F
RPINR21	06AA	—	—	_	—	—	—	—	—	—	—	_	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	001F
RPINR22	06AC	—	_	_	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	_	_	_	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	1F1F
RPINR23	06AE	—	—	_	_	_	_	_	—	_	—	_	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	001F
RPOR0	06C0	—	—	_	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	—	—	_	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	—	—	_	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	—	_	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	—	—	_	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	—	—	_	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	—	—	_	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	—	—	_	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	—	—	_	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	—	—	_	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	—	—	_	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	—	_	_	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_		_	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	—	_	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_		_	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	—	_	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_		_		RP17R3 ⁽¹⁾	RP17R2 ⁽¹⁾			_	—	_	RP16R4 ⁽¹⁾			RP16R1 ⁽¹⁾		0000
RPOR9	06D2	—	—	—	RP19R4 ⁽¹⁾		RP19R2 ⁽¹⁾	RP19R1 ⁽¹⁾		—	—	_	RP18R4 ⁽¹⁾	RP18R3 ⁽¹⁾	RP18R2 ⁽¹⁾			0000
RPOR10	06D4	—			RP21R4 ⁽¹⁾		RP21R2 ⁽¹⁾			—	_	_	RP20R4 ⁽¹⁾			RP20R1 ⁽¹⁾		0000
RPOR11	06D6	—				RP23R3 ⁽¹⁾	RP23R2 ⁽¹⁾			_	_	_	RP22R4 ⁽¹⁾	RP22R3 ⁽¹⁾				0000
RPOR12	06D8	—	—	_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1 ⁽¹⁾	RP25R0 ⁽¹⁾	—	—	_	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	0000

TABLE 4-21: PERIPHERAL PIN SELECT REGISTER MAP (PPS)

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 These bits are only available on 44-pin devices; otherwise, they read as '0'.

5.5.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-4).

EXAMPLE 5-4: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

; Setup a p	pointer to data Program Memory		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;1	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;1	initialize a register with program memory address
MOV	#LOW_WORD_N, W2	;	
MOV	#HIGH_BYTE_N, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; Setup NVN MOV MOV	4CON for programming one word #0x4003, W0 W0, NVMCON	;	data Program Memory Set NVMOP bits to 0011
DISI	#5	;	Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	;	Write the key sequence
MOV	W0, NVMKEY		
MOV	#0xAA, W0		
MOV	W0, NVMKEY		
BSET	NVMCON, #WR	;	Start the write cycle
NOP		;	2 NOPs required after setting WR
NOP		;	

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"Power-Saving Features"* (DS39698). Additional power-saving tips can also be found in Appendix B: "Additional Guidance for PIC24FJ64GA004 Family Applications" of this document.

The PIC24FJ64GA004 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1. Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

9.2.1 SLEEP MODE

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the Input Change Notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

Additional power reductions can be achieved by disabling the on-chip voltage regulator whenever Sleep mode is invoked. This is done by clearing the PMSLP bit (RCON<8>). Disabling the regulator adds an additional delay of about 190 μ s to the device wake-up time. It is recommended that applications not using the voltage regulator leave the PMSLP bit set. For additional details on the regulator and Sleep mode, see **Section 24.2.5 "Voltage Regulator Standby Mode"**.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled.
- · On any form of device Reset.
- On a WDT time-out.

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	; Put the device into SLEEP mode
PWRSAV	#IDLE_MODE	; Put the device into IDLE mode

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits

REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—
						bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
						bit 0
bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			U-0 U-0 R/W-1 — — SS1R4 bit W = Writable bit	— — — — U-0 U-0 R/W-1 R/W-1 — — — SS1R4 SS1R3 bit W = Writable bit U = Unimplem	— Image: Marce of the field of th	— —

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits

REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0

Legend:					
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8	RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits
	(see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP0R<4:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15	-						bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7							bit 0

Legend:						
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 15-1: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, SPIxTXB is full 0 = Transmit has started, SPIxTXB is empty
	In Standard Buffer mode: Automatically set in hardware when CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.
	In Enhanced Buffer mode: Automatically set in hardware when CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	1 = Receive is complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty
	In Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.
	In Enhanced Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See **Section 10.4** "**Peripheral Pin Select (PPS)**" for more information.

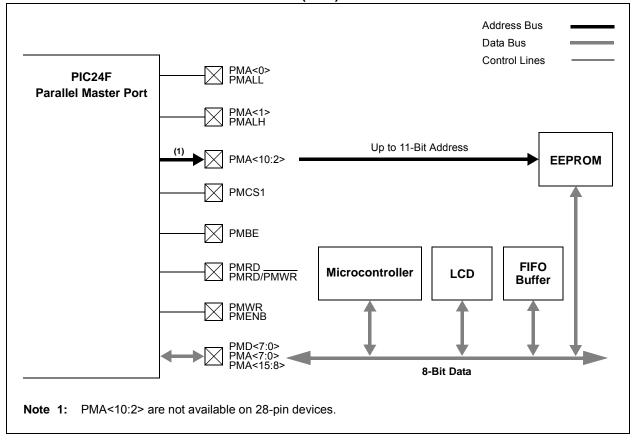
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends a NACK during Acknowledge 0 = Sends an ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at the end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware is clear at the end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of master Start sequence. 0 = Start condition is not in progress

Note 1: In Slave mode, the module will not automatically clock stretch after receiving the address byte.

18.0 PARALLEL MASTER PORT (PMP)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	"Parallel Master Port (PMP)" (DS39713).


The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Note: A number of the pins for the PMP are not present on PIC24FJ64GA004 devices. Refer to the specific device's pinout to determine which pins are available.

Key features of the PMP module include:

- Up to 16 Programmable Address Lines
- One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 18-1: PARALLEL MASTER PORT (PMP) MODULE OVERVIEW

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 ARPT7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 00h bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 0000 = Every half second 0001 = Every second 0010 = Every 10 seconds 0011 = Every minute 0100 = Every 10 minutes 0101 = Every hour 0110 = Once a day 0111 = Once a week 1000 = Once a month 1001 = Once a year (except when configured for February 29th, once every 4 years) 101x = Reserved; do not use 11xx = Reserved: do not use bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers; the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'. ALRMVAL<15:8>: 00 = ALRMMIN 01 = ALRMWD 10 = ALRMMNTH 11 = Unimplemented ALRMVAL<7:0>: 00 = ALRMSEC 01 = ALRMHR 10 = ALRMDAY 11 = Unimplemented bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits 11111111 = Alarm will repeat 255 more times 00000000 = Alarm will not repeat The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

19.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.

EQUATION 19-1:

(Ideal Frequency[†] – Measured Frequency) * 60 = Clocks per Minute

† Ideal frequency = 32,768 Hz

3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2), the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL<7:0> bits value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in the CALx bits value adds or subtracts 4 pulses).

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note:	It is up to the user to include in the error
	value the initial error of the crystal, drift
	due to temperature and drift due to crystal
	aging.

19.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 19-3)
- One-time alarm and repeat alarm options are available

19.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASK<3:0> bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if CHIME (ALCFGRPT<14>) = 1. Instead of the alarm being disabled when the value of the ARPTX bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

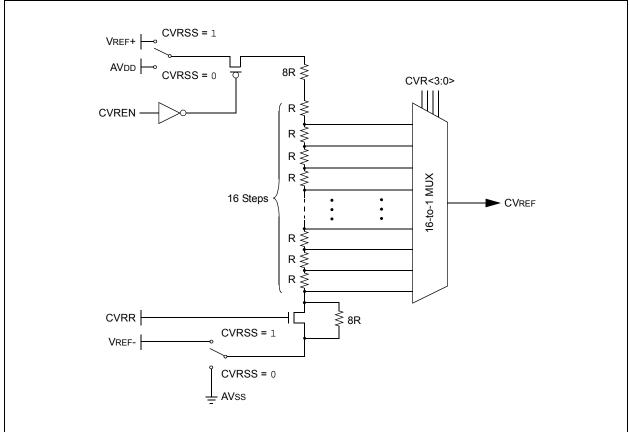
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15	it 15				•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

23.0 COMPARATOR VOLTAGE REFERENCE

Note:	This data sheet summarizes the features of					
	this group of PIC24F devices. It is not					
	intended to be a comprehensive reference					
	source. For more information, refer to					
	the "PIC24F Family Reference Manual",					
	"Comparator Voltage Reference					
	Module" (DS39709).					


23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of

output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	0-0				0-0					
 bit 15				_		_	bit 8			
							5100			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0			
bit 7	•				L		bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8		ted: Read as '								
bit 7		CVREN: Comparator Voltage Reference Enable bit								
	1 = CVREF circuit is powered on									
		rcuit is powered								
bit 6		nparator VREF C	•							
		 1 = CVREF voltage level is output on the CVREF pin 0 = CVREF voltage level is disconnected from the CVREF pin 								
bit 5		arator VREF Ra		•						
		range should b	-		RSRC/24 step-s	ize				
	0 = CVRSRC	range should b	e 0.25 to 0.719	OVRSRC with	CVRSRC/32 ste	p-size				
bit 4	CVRSS: Corr	nparator VREF S	Source Selection	on bit						
		1 = Comparator reference source, CVRSRC = VREF+ – VREF- 0 = Comparator reference source, CVRSRC = AVDD – AVSS								
bit 3-0	CVR<3:0>: C	CVR<3:0>: Comparator VREF Value Selection $0 \le CVR<3:0> \le 15$ bits								
	When CVRR									
		R<3:0>/24) • (C 	VRSRC)							
	$\frac{\text{When CVRR}}{\text{CVRFF}} = 1/4$	<u>= 0:</u> • (CVRSRC) + (C	VR<3.0>/32)	(CVRSRC)						
			VIC 0.0-702)							

REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
r	JTAGEN	GCP	GWRP	DEBUG	r	ICS1	ICS0
bit 15 bit 8							

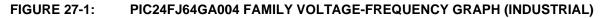
R/PO-1	R/PO-1	r	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	r	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

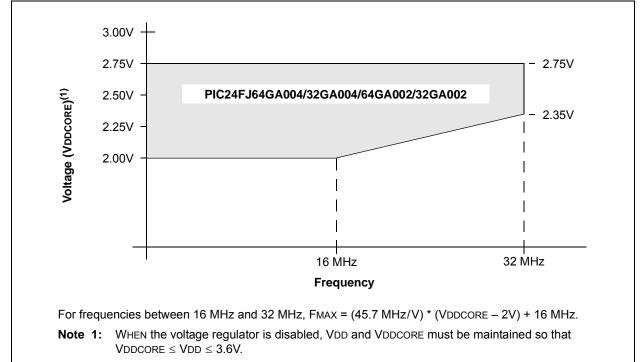
Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read	d as '0'
-n = Value when device is u	nprogrammed	'1' = Bit is set	'0' = Bit is cleared

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	1 = Code protection is disabled0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Reserved: Always maintain as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator EMUC1/EMUD1 pins are shared with PGC1/PGD1 10 = Emulator EMUC2/EMUD2 pins are shared with PGC2/PGD2 01 = Emulator EMUC3/EMUD3 pins are shared with PGC3/PGD3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Reserved
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

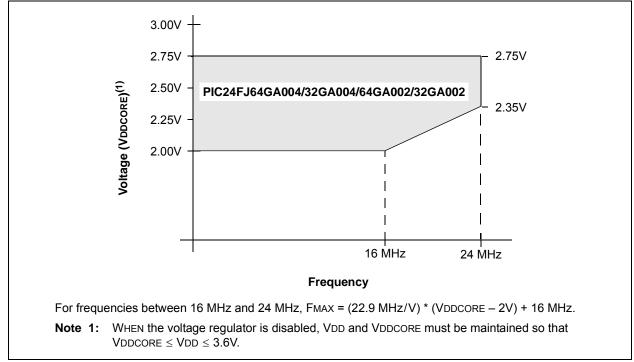
REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U
	—	—	—	—	—	—	—
bit 23							bit 16
U	U	U	U	U	U	U	R
—	—	—	—	—		—	MAJRV2
bit 15							bit 8
R	R	U	U	U	R	R	R
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0
bit 7							bit 0


Legend: R = Read-only bit	U = Unimplemented bit	
---------------------------	-----------------------	--


- bit 23-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N


TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

27.1 DC Characteristics

FIGURE 27-2: PIC24FJ64GA004 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED TEMPERATURE)

	PADCFG1 (Pad Configuration Control)	173, 180
	PMADDR (Parallel Port Address)	
	PMAEN (Parallel Port Enable)	171
	PMCON (Parallel Port Control)	168
	PMMODE (Parallel Port Mode)	
	PMSTAT (Parallel Port Status)	172
	RCFGCAL (RTCC Calibration	
	and Configuration)	179
	RCON (Reset Control)	
	RPINR0 (Peripheral Pin Select Input 0)	111
	RPINR1 (Peripheral Pin Select Input 1)	
	RPINR11 (Peripheral Pin Select Input 11)	114
	RPINR18 (Peripheral Pin Select Input 18)	
	RPINR19 (Peripheral Pin Select Input 19)	115
	RPINR20 (Peripheral Pin Select Input 20)	116
	RPINR21 (Peripheral Pin Select Input 21)	
	RPINR22 (Peripheral Pin Select Input 22)	117
	RPINR23 (Peripheral Pin Select Input 23)	
	RPINR3 (Peripheral Pin Select Input 3)	112
	RPINR4 (Peripheral Pin Select Input 4)	
	RPINR7 (Peripheral Pin Select Input 7)	113
	RPINR8 (Peripheral Pin Select Input 8)	
	RPINR9 (Peripheral Pin Select Input 9)	
	RPOR0 (Peripheral Pin Select Output 0)	118
	RPOR1 (Peripheral Pin Select Output 1)	110
	RPOR10 (Peripheral Pin Select Output 10)	123
	RPOR11 (Peripheral Pin Select Output 11)	123
	RPOR12 (Peripheral Pin Select Output 12)	
	RPOR2 (Peripheral Pin Select Output 2)	119
	RPOR3 (Peripheral Pin Select Output 3)	119
	RPOR4 (Peripheral Pin Select Output 4)	
	RPOR5 (Peripheral Pin Select Output 5)	120
	RPOR6 (Peripheral Pin Select Output 6)	
	RPOR7 (Peripheral Pin Select Output 7)	121
	RPOR8 (Peripheral Pin Select Output 8)	122
	RPOR9 (Peripheral Pin Select Output 9)	
	SPIxCON1 (SPIx Control 1)	146
	SPIxCON2 (SPIx Control 2)	147
	SPIxSTAT (SPIx Status and Control)	
	SR (ALU STATUS)	26, 63
	T1CON (Timer1 Control)	
	TxCON (Timer2 and Timer4 Control)	130
	TyCON (Timer3 and Timer5 Control)	131
	UxMODE (UARTx Mode)	
	UxRXREG (UARTx Receive)	166
	UxSTA (UARTx Status and Control)	
	UxTXREG (UARTx Transmit)	
	WKDYHR (RTCC Weekday and Hours Value).	183
	YEAR (RTCC Year Value)	102
Rese	ets	
	Brown-out Reset (BOR)	53
	Clock Source Selection	
	Configuration Mismatch Reset (CM)	53
	Delay Times	56
	Device Reset Times	
	Illegal Opcode Reset (IOPUWR)	53
	Master Clear Pin Reset (MCLR)	
	Power-on Reset (POR)	53
	RCON Flags Operation	
	SFR States	
	Software RESET Instruction (SWR)	
	Trap Conflict Reset (TRAPR)	
	Uninitialized W Register Reset (UWR)	
	Watchdog Timer Reset (WDT)	53

Revision History RTCC	267
Alarm Configuration	
Alarm Mask Settings	187
Calibration	186
Register Mapping	178
Write Lock	178

S

Serial Peripheral Interface. See SPI.	
SFR Space	32
Sleep Mode	103
Software Simulator (MPLAB SIM)	221
Software Stack	
Special Features	8
SPI	
Enhanced Buffer Master Mode Setup	143
Enhanced Buffer Slave Mode Setup	143
Standard Master Mode Setup	141
Standard Slave Mode Setup	141
т	
Timer1	125
Timer2/3 and Timer4/5	127
Timing Diagrams	
CLKO and I/O	
External Clock	

U

UART
Baud Rate Generator (BRG) 160
Break and Sync Transmit Sequence 161
IrDA Support161
Operation of UxCTS and UxRTS Control Pins 161
Receiving in 8-Bit or 9-Bit Data Mode 161
Transmitting in 8-Bit Data Mode 161
Transmitting in 9-Bit Data Mode 161
Universal Asynchronous Receiver Transmitter. See UART.
Unused I/Os

۷

VDDCORE/VCAP Pin	
Voltage Regulator (On-Chip)	215
and BOR	215
and POR	216
Low-Voltage Detection (LVD)	215
Standby Mode	216
Tracking Mode	215
Voltage Regulator Pins	19

W

Watchdog Timer (WDT)	
Windowed Operation	
WWW Address	
WWW, On-Line Support	6

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189 China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11