

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ16GA002
- PIC24FJ32GA002
- PIC24FJ48GA002
- PIC24FJ64GA002
- PIC24FJ16GA004
- PIC24FJ32GA004
- PIC24FJ48GA004
- PIC24FJ64GA004

This family introduces a new line of Microchip devices: a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. The PIC24FJ64GA004 family offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but don't require the numerical processing power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- · Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages such as 'C'
- · Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FJ64GA004 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- On-the-Fly Clock Switching: The device clock can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing the user to incorporate power-saving ideas into their software designs.
- **Doze Mode Operation:** When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: The microcontroller can suspend all operations, or selectively shut down its core while leaving its peripherals active, with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ64GA004 family offer five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- A Fast Internal Oscillator (FRC) with a nominal 8 MHz output, which can also be divided under software control to provide clock speeds as low as 31 kHz.
- A Phase Lock Loop (PLL) frequency multiplier, available to the External Oscillator modes and the FRC oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor. This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

TABLE 4-10: UART REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_		_			UTX8	UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	0000
U1RXREG	0226	_	_	_		_			URX8	URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0	0000
U1BRG	0228							Baud R	ate Genera	ator Prescale	r Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_		_			UTX8	UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	0000
U2RXREG	0236	_	_	_	_	_	_	_	URX8	URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0	0000
U2BRG	0238		Baud Rate Generator Prescaler 0000									0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	—	—	_	—	_	—	—	_		—	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							SP	PI1 Transmit/	Receive Bu	ffer							0000
SPI2STAT	0260	SPIEN		SPISIDL	—	—	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	_	_		_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI2BUF	0268	SPI2 Transmit/Receive Buffer										0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility is enabled by setting the PSV bit in the CPU Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

5.5.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-4).

EXAMPLE 5-4: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

;	Setup a p	pointer to data Program Memory		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize a register with program memory address
	MOV	#LOW_WORD_N, W2	;	
	MOV	#HIGH_BYTE_N, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	Setup NVI	MCON for programming one word t	20	data Program Memory
	MOV	#0x4003, W0	;	
	MOV	W0, NVMCON	;	Set NVMOP bits to 0011
	DISI	#5	;	Disable interrupts while the KEY sequence is written
	MOV	#0x55, W0	;	Write the key sequence
	MOV	W0, NVMKEY		
	MOV	#0xAA, W0		
	MOV	W0, NVMKEY		
	BSET	NVMCON, #WR	;	Start the write cycle
	NOP		;	2 NOPs required after setting WR
	NOP		;	

6.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Reset"** (DS39712).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 7-1: PIC24F INTERRUPT VECTOR TABLE

TABLE 7-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	0001172h	Reserved

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0		
—	—	PMPIF	—	—	_	OC5IF	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
IC5IF	IC4IF	IC3IF	_		_	SPI2IF	SPF2IF		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15-14	Unimplemen	ted: Read as '	כ'						
bit 13	PMPIF: Para	PMPIF: Parallel Master Port Interrupt Flag Status bit							
	1 = Interrupt	request has occ	curred						
	0 = Interrupt request has not occurred								
bit 12-10	Unimplemented: Read as '0'								
bit 9	OC5IF: Outp	ut Compare Ch	annel 5 Interru	pt Flag Status I	oit				
	1 = Interrupt 0 = Interrupt	request has occ request has not	curred						
bit 8	Unimplemen	ted: Read as ')'						
bit 7	IC5IF: Input (Capture Channe	el 5 Interrupt F	lag Status bit					
	1 = Interrupt	request has occ	curred	lag clatac sit					
	0 = Interrupt	request has not	occurred						
bit 6	IC4IF: Input (Capture Channe	el 4 Interrupt F	lag Status bit					
	1 = Interrupt	request has occ	curred						
	0 = Interrupt	request has not	occurred						
bit 5	IC3IF: Input (Capture Channe	el 3 Interrupt F	lag Status bit					
	1 = Interrupt	request has occ	curred						
h# 4 0		request has not	occurred						
DIT 4-2		ited: Read as							
DIT	SPI2IF: SPI2 Event Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
bit 0	SPF2IF: SPI	2 Fault Interrupt	Flag Status bi	it					
	1 = Interrupt	request has occ	curred						
	0 = Interrupt	request has not	occurred						

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0			
	_	PMPIE		_		OC5IE	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
IC5IE	IC4IE	IC3IE	—			SPI2IE	SPF2IE			
bit 7							bit 0			
l egend:]			
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
	-									
bit 15-14	Unimplemen	ted: Read as '	כי							
bit 13	PMPIE: Para	PMPIE: Parallel Master Port Interrupt Enable bit								
	1 = Interrupt request is enabled									
1 1 10 10	0 = Interrupt request is not enabled									
bit 12-10	Unimplemen	Unimplemented: Read as '0'								
bit 9	OC5IE: Output	ut Compare Ch	annel 5 Interru	ipt Enable bit						
	0 = Interrupt i	request is enab	nabled							
bit 8	Unimplemen	ted: Read as '	o'							
bit 7	IC5IE: Input (Capture Channe	el 5 Interrupt E	nable bit						
	1 = Interrupt	request is enab	led							
	0 = Interrupt i	request is not e	nabled							
bit 6	IC4IE: Input (Capture Channe	el 4 Interrupt E	nable bit						
	1 = Interrupt I	request is enab request is not e	ied nabled							
bit 5	IC3IE: Input (Capture Channe	el 3 Interrupt E	nable bit						
	1 = Interrupt	request is enab	led							
	0 = Interrupt	request is not e	nabled							
bit 4-2	Unimplemen	ted: Read as '	כ'							
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit									
	1 = Interrupt	request is enab	led							
hit 0										
	1 = Interruptu	request is each								
	0 = Interrupt I	request is not e	nabled							
	·									

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—	_		_	_	LVDIE
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
	—	—	_	CRCIE	U2ERIE	U1ERIE	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 15-9	Unimplemen	ted: Read as '0	,				
bit 8	LVDIE: Low-\	/oltage Detect I	nterrupt Enabl	e Status bit			
	1 = Interrupt i	request is enabl	ed				
	0 = Interrupt i	request is not er	habled				
bit 7-4	Unimplemen	ted: Read as '0)'				
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	it			
	1 = Interrupt i	request is enabl	ed				
	0 = Interrupt i	request is not ei	nabled				
bit 2	U2ERIE: UAF	RT2 Error Interr	upt Enable bit				
	1 = Interrupt	request is enabl	ed				
	0 = Interrupt i	request is not ei	nabled				
bit 1	U1ERIE: UAF	RT1 Error Interr	upt Enable bit				
	1 = Interrupt i	request is enabl	ed				
1.1.0		equest is not el					
bit U	Unimplemen	ted: Read as '0	ŕ				

REGISTER 7-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
_	—	—	—	—	LVDIP2	LVDIP1	LVDIP0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-3	Unimplemen	ted: Read as '	כ'					
bit 2-0	LVDIP<2:0>:	Low-Voltage D	etect Interrupt	Priority bits				
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)				
	•							

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- · Fast Internal RC (FRC) Oscillator
- Low-Power Internal RC (LPRC) Oscillator

The primary oscillator and FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 24.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits. FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
(Reserved)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

NOTES:

14.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Output Compare"** (DS39706).

14.1 Setup for Single Output Pulse Generation

When the OCM<2:0> control bits (OCxCON<2:0>) are set to '100', the selected output compare channel initializes the OCx pin to the low state and generates a single output pulse.

To generate a single output pulse, the following steps are required (these steps assume the timer source is initially turned off, but this is not a requirement for the module operation):

- Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
- 2. Calculate the time to the rising edge of the output pulse relative to the TMRy start value (0000h).
- 3. Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.
- 4. Write the values computed in Steps 2 and 3 above into the Output Compare x register, OCxR, and the Output Compare x Secondary register, OCxRS, respectively.
- 5. Set the Timery Period register, PRy, to a value equal to or greater than the value in OCxRS, the Output Compare x Secondary register.
- Set the OCMx bits to '100' and the OCTSEL (OCxCON<3>) bit to the desired timer source. The OCx pin state will now be driven low.
- 7. Set the TON (TyCON<15>) bit to '1', which enables the compare time base to count.
- 8. Upon the first match between TMRy and OCxR, the OCx pin will be driven high.
- 9. When the incrementing timer, TMRy, matches the Output Compare x Secondary register, OCxRS, the second and trailing edge (high-to-low) of the pulse is driven onto the OCx pin. No additional pulses are driven onto the OCx pin and it remains at low. As a result of the second compare match event, the OCxIF interrupt flag bit is set, which will result in an interrupt if it is enabled, by setting the OCxIE bit. For further information on peripheral interrupts, refer to Section 7.0 "Interrupt Controller".

10. To initiate another single pulse output, change the Timer and Compare register settings, if needed, and then issue a write to set the OCMx bits to '100'. Disabling and re-enabling the timer and clearing the TMRy register are not required, but may be advantageous for defining a pulse from a known event time boundary.

The output compare module does not have to be disabled after the falling edge of the output pulse. Another pulse can be initiated by rewriting the value of the OCxCON register.

14.2 Setup for Continuous Output Pulse Generation

When the OCM<2:0> control bits (OCxCON<2:0>) are set to '101', the selected output compare channel initializes the OCx pin to the low state and generates output pulses on each and every compare match event.

For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required (these steps assume the timer source is initially turned off, but this is not a requirement for the module operation):

- 1. Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
- 2. Calculate the time to the rising edge of the output pulse relative to the TMRy start value (0000h).
- 3. Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.
- 4. Write the values computed in Steps 2 and 3 above into the Output Compare x register, OCxR, and the Output Compare x Secondary register, OCxRS, respectively.
- 5. Set the Timery Period register, PRy, to a value equal to or greater than the value in OCxRS.
- Set the OCMx bits to '101' and the OCTSEL bit to the desired timer source. The OCx pin state will now be driven low.
- Enable the compare time base by setting the TON (TyCON<15>) bit to '1'.
- 8. Upon the first match between TMRy and OCxR, the OCx pin will be driven high.
- 9. When the compare time base, TMRy, matches the OCxRS, the second and trailing edge (high-to-low) of the pulse is driven onto the OCx pin.
- 10. As a result of the second compare match event, the OCxIF interrupt flag bit set.
- When the compare time base and the value in its respective Timery Period register match, the TMRy register resets to 0x0000 and resumes counting.
- 12. Steps 8 through 11 are repeated and a continuous stream of pulses is generated indefinitely. The OCxIF flag is set on each OCxRS/TMRy compare match event.

© 2010-2013 Microchip Technology Inc.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 5	D/A: Data/Address bit (when operating as I ² C slave)
	 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by a write to I2CxTRN or by reception of a slave byte.
bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – Indicates data transfer is output from slave 0 = Write – Indicates data transfer is input to slave Hardware is set or clear after reception of an I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit is in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes I2CxTRN. Hardware is clear at completion of data transmission.

Note 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data, either as a slave or a master. Reading ACKSTAT after receiving address or data bytes returns an invalid result.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

AMSK<9:0>: Mask for Address Bit x Select bits

- 1 = Enables masking for bit x of incoming message address; bit match is not required in this position
- 0 = Disables masking for bit x; bit match is required in this position

bit 9-0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PMPEN		PSIDL	ADRMUX1 ⁽¹⁾	ADRMUX0 ⁽¹⁾	PTBEEN	PTWREN	PTRDEN		
bit 15 bit 8									
		(6)		(6)					
R/W-0	R/W-0	R/W-0 ⁽²⁾	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0		
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP		
bit 7 bit									
Levend									
Legena:	la hit	\// = \//ritabla	h:t		opted bit read	1 ~~ '0'			
		vv = vvritable	DIL +	0 = 0 miniplem	ented bit, read	v – Ritic unkn			
	IFUR	I – DILISSE	L		lieu		IOWIT		
hit 15	DMDEN . DM	P Enable hit							
bit 10	1 = PMP is e	enabled							
	0 = PMP is c	disabled, no off	-chip access is	performed					
bit 14	Unimplemer	nted: Read as	0'						
bit 13	PSIDL: PMP	Stop in Idle Mo	ode bit						
	1 = Disconti	nues module o	peration when c	levice enters Idl	le mode				
		es module oper	ation in Idle mo	de	1)				
bit 12-11	ADRMUX<1:	: 0>: Address/D	ata Multiplexing	Selection bits	')				
	11 = Reserve 10 = All 16 b	eu its of address a	are multiplexed	on the PMD<7.	0> nins				
	01 = Lower 8	B bits of addres	s are multiplex	ed on the PMD	<7:0> pins, up	per 3 bits are r	multiplexed on		
	PMA<1	0:8>							
h:1 10		s and data app	ear on separate	e pins	(mada)				
DICTO	1 - DMRE pr	PTBEEN: PMP Byte Enable Port Enable bit (16-Bit Master mode)							
	0 = PMBE pc	ort is disabled							
bit 9	PTWREN: P	PTWREN: PMP Write Enable Strobe Port Enable bit							
	1 = PMWR/PMENB port is enabled								
	0 = PMWR/PMENB port is disabled								
bit 8	PTRDEN: PMP Read/Write Strobe Port Enable bit								
1 = PMRD/PMWR port is enabled									
hit 7-6	0 - FINRD/F	hin Select Fun							
	11 = Reserve	ad							
	10 = PMCS1	functions as c	hip set						
	01 = Reserve	ed							
	00 = Reserve	ed	(2)						
bit 5	ALP: Address Latch Polarity bit ⁽²⁾								
	$\perp = Active-hl0 = Active-hl$	ign <u>(PiviALL</u> an w (PMALL and	U PIVIALH) I PMALH)						
bit 4	Unimplemer	Unimplemented: Read as '0'							
bit 3	CS1P: Chip	CS1P: Chip Select 1 Polarity bit ⁽²⁾							
	1 = Active-high (PMCS1/PMCS1)								
	0 = Active-lo	w (PMCS1/PN	ICS1)						
Note 1: P	MA<10:2> hits	are not availab	le on 28-pin dev	/ices.					

REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER

2: These bits have no effect when their corresponding pins are used as address lines.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch E		0.65 BSC				
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B