

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj48ga002-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number				
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
AN0	2	27	19		ANA	A/D Analog Inputs.
AN1	3	28	20	I	ANA	
AN2	4	1	21	Ι	ANA	
AN3	5	2	22	I	ANA	
AN4	6	3	23	Ι	ANA	
AN5	7	4	24	Ι	ANA	
AN6	_	_	25	I	ANA	
AN7		_	26	Ι	ANA	
AN8		_	27	Ι	ANA	
AN9	26	23	15	I	ANA	
AN10	25	22	14	Ι	ANA	
AN11	24	21	11	Ι	ANA	
AN12	23	20	10	I	ANA	
ASCL1	15	12	42	I/O	l ² C	Alternate I2C1 Synchronous Serial Clock Input/Output. ⁽¹⁾
ASDA1	14	11	41	I/O	l ² C	Alternate I2C2 Synchronous Serial Clock Input/Output. (1)
AVDD	—	_	17	Р	_	Positive Supply for Analog Modules.
AVss	—	_	16	Р	_	Ground Reference for Analog Modules.
C1IN-	6	3	23	Ι	ANA	Comparator 1 Negative Input.
C1IN+	7	4	24	Ι	ANA	Comparator 1 Positive Input.
C2IN-	4	1	21	I	ANA	Comparator 2 Negative Input.
C2IN+	5	2	22	I	ANA	Comparator 2 Positive Input.
CLKI	9	6	30	I	ANA	Main Clock Input Connection.
CLKO	10	7	31	0	_	System Clock Output.

Legend: TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

2.6 External Oscillator Pins

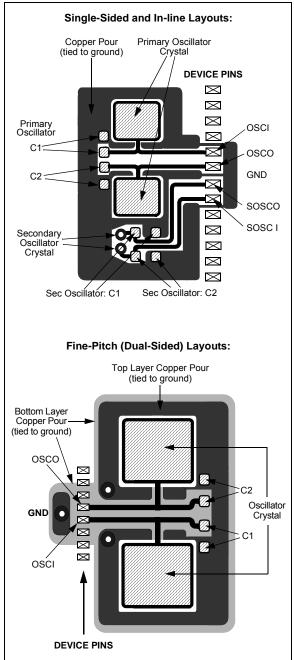
Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).


For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

FIGURE 2-5:

PLACEMENT OF THE OSCILLATOR CIRCUIT

SUGGESTED

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

NOTES:

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
NSTDIS	—	—	—	—	_	—	_	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
		—	MATHERR	ADDRERR	STKERR	OSCFAIL		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own	
bit 15		rrupt Nesting E						
		nesting is disat nesting is enab						
bit 14-5		•						
bit 14-5 bit 4	•	ted: Read as '						
DIL 4		trap has occur	⁻ Trap Status bit red	L				
		trap has not oc						
bit 3	ADDRERR: A	Address Error ⊺	Frap Status bit					
	1 = Address e	error trap has c	occurred					
	0 = Address e	error trap has r	ot occurred					
bit 2		ack Error Trap						
	1 = Stack error trap has occurred							
bit 1		 0 = Stack error trap has not occurred OSCFAIL: Oscillator Failure Trap Status bit 						
		failure trap ha	•					
		failure trap ha						
bit 0		ted: Read as '						
	•							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE			
bit 15				•			bit			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE ⁽¹⁾			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkn	iown			
bit 15-14	-	ted: Read as '								
bit 13			nplete Interrup	t Enable bit						
	•	equest is enab equest is not e								
bit 12	-	-	r Interrupt Enal	hle hit						
		equest is enab	•							
		equest is not e								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit									
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 									
bit 10	-	-		Enable bit						
		PI1IE: SPI1 Transfer Complete Interrupt Enable bit = Interrupt request is enabled								
	•	equest is not e								
bit 9		Fault Interrup								
		equest is enab equest is not e								
bit 8	-	Interrupt Enab								
		equest is enab								
	0 = Interrupt r	equest is not e	nabled							
bit 7		Interrupt Enab								
	•	equest is enab								
bit 6	•	equest is not e	annel 2 Interru	unt Enable bit						
	-	equest is enab								
		equest is not e								
bit 5	IC2IE: Input C	Capture Chann	el 2 Interrupt E	nable bit						
	•	equest is enab								
L:1 1	-	equest is not e								
bit 4 bit 3	-	ted: Read as '								
UIL J	I IIE. IIIIief I	Interrupt Enab								
	1 = Interrupt r	equest is enab	led							

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

Note 1: If INTxIE = 1, this external interrupt input must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
 bit 7	OC3IP2	OC3IP1	OC3IP0	—	_	_	bit (
							Ditt
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T4IP<2:0>: ⊺i	imer4 Interrupt	Priority bits				
	111 = Interrup	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	• 001 = Interrup	pt is Priority 1					
		pt is Priority 1 pt source is dis	abled				
bit 11	000 = Interru						
bit 11 bit 10-8	000 = Interrup Unimplemen	pt source is dis ted: Read as '	0'	Interrupt Priorit	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '	^{0'} are Channel 4	• •	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4	• •	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4	• •	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4	• •	y bits		
	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4 highest priority	• •	/ bits		
	000 = Interrup Unimplemen OC4IP<2:0>: 111 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1	₀ ' are Channel 4 highest priority abled	• •	/ bits		
bit 10-8	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	^{0'} are Channel 4 highest priority abled 0'	• •			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>: 111 = Interrup 001 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4 highest priority abled 0' are Channel 3 highest priority	y interrupt) Interrupt Priority			

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '11111' and all RPORx registers reset to '00000', all Peripheral Pin Select inputs are tied to RP31 and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to
	RP31, RP31 does not have to exist on a
	device for the registers to be reset to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output. The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 10-2 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Registers __builtin_write_OSCCONL(OSCCON & 0xBF); // Configure Input Functions (Table 10-2)) // Assign UlRX To Pin RP0 RPINR18bits.UlRXR = 0; // Assign UlCTS To Pin RP1 RPINR18bits.UlCTSR = 1; // Configure Output Functions (Table 10-3) // Assign UlTX To Pin RP2 RPOR1bits.RP2R = 3; // Assign ULRTS To Pin RP3 RPOR1bits.RP3R = 4; // Lock Registers __builtin_write_OSCCONL(OSCCON | 0x40);

REGISTER 10-7: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15					•		bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 IC5R<4:0>: Assign Input Capture 5 (IC5) to the Corresponding RPn Pin bits

REGISTER 10-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

				D A A A	D 444 4	D 4 4 4	D 11/ 1
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 OCFBR<4:0>: Assign Output Compare Fault B (OCFB) to the Corresponding RPn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits

14.3 Pulse-Width Modulation Mode

Note:	This peripheral contains input and output						
	functions that may need to be configured						
	by the Peripheral Pin Select. See						
	Section 10.4 "Peripheral Pin Select						
	(PPS)" for more information.						

The following steps should be taken when configuring the output compare module for PWM operation:

- 1. Set the PWM period by writing to the selected Timery Period register (PRy).
- 2. Set the PWM duty cycle by writing to the OCxRS register.
- 3. Write the OCxR register with the initial duty cycle.
- 4. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Configure the output compare module for one of two PWM Operation modes by writing to the Output Compare Mode bits, OCM<2:0> (OCxCON<2:0>).
- 6. Set the TMRy prescale value and enable the time base by setting TON (TyCON<15>) = 1.
 - Note: The OCxR register should be initialized before the output compare module is first enabled. The OCxR register becomes a read-only Duty Cycle register when the module is operated in the PWM modes. The value held in OCxR will become the PWM duty cycle for the first PWM period. The contents of the Output Compare x Secondary register, OCxRS, will not be transferred into OCxR until a time base period match occurs.

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timery Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

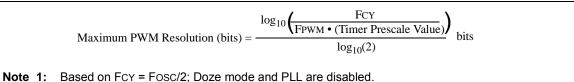
PWM Period = $[(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$ Where:

PWM Frequency = 1/[PWM Period]

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

14.3.2 PWM DUTY CYCLE


The PWM duty cycle is specified by writing to the OCxRS register. The OCxRS register can be written to at any time, but the duty cycle value is not latched into OCxR until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation. In the PWM mode, OCxR is a read-only register.

Some important boundary parameters of the PWM duty cycle include:

- If the Output Compare x register, OCxR, is loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxR is greater than PRy (Timery Period register), the pin will remain high (100% duty cycle).
- If OCxR is equal to PRy, the OCx pin will be low for one time base count value and high for all other count values.

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 and 16 MIPS.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT ⁽	¹⁾ TRSTAT	—	—	—	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	8 R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7			1			•	bit 0
Legend:		C = Clearabl	e bit	HS = Hardware	e Settable bit		
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clear	red	x = Bit is unkr	nown
HSC = Har	dware Settable/C	learable bit					
bit 15	ACKSTAT: Ad	cknowledge St	atus bit ⁽¹⁾				
		s detected las					
	0 = ACK was						
	Hardware is s			-			
bit 14				ting as l ² C™ ma	ister, applicable	to master trans	smit operation)
		ansmit is in pro	U	+ ACK)			
		ansmit is not ir et at the beginn		ansmission. Har	dware is clear at	the end of slave	Acknowledge
bit 13-11	Unimplemen	-	-				ger
bit 10	BCL: Master						
				ing a master op	eration		
	0 = No collisio	on					
	Hardware is s	et at the dete	ction of bus co	ollision.			
bit 9	GCSTAT: Ger						
		1 = General call address was received 0 = General call address was not received					
				u s the general call	address. Hardw	vare is clear at s	Stop detection.
bit 8	ADD10: 10-B			stre general eau			
		lress was mat					
		lress was not					
	Hardware is se	et at the match	of the 2nd byte	e of matched 10-b	oit address. Hard	ware is clear at	Stop detection.
bit 7	IWCOL: I2Cx				2		
			e I2CxTRN re	egister failed beo	cause the I ² C m	odule is busy	
	0 = No collisio Hardware is s		rrence of a wr	ite to I2CxTRN	while busy (clea	red by software	e)
bit 6	12COV: 12Cx 1					. ca sy convar	
211.0			-	CV register is sti	Il holdina the pro	evious bvte	
	0 = No overflo				3 P.		
	Hardware is s	et at an attem	pt to transfer	2CxRSR to 12C	xRCV (cleared	by software).	
Note 1:	n both Master an	d Slave mode	s, the ACKST	AT bit is only up	dated when tran	ismitting data r	esultina in the
r	reception of an A data, either as a s	CK or NACK f	rom another d	evice. Do not ch	neck the state of	ACKSTAT who	en receiving

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 ARPT7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 00h bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 0000 = Every half second 0001 = Every second 0010 = Every 10 seconds 0011 = Every minute 0100 = Every 10 minutes 0101 = Every hour 0110 = Once a day 0111 = Once a week 1000 = Once a month 1001 = Once a year (except when configured for February 29th, once every 4 years) 101x = Reserved; do not use 11xx = Reserved: do not use bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers; the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'. ALRMVAL<15:8>: 00 = ALRMMIN 01 = ALRMWD 10 = ALRMMNTH 11 = Unimplemented ALRMVAL<7:0>: 00 = ALRMSEC 01 = ALRMHR 10 = ALRMDAY 11 = Unimplemented bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits 11111111 = Alarm will repeat 255 more times 00000000 = Alarm will not repeat The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

20.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT

REGISTER 20-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

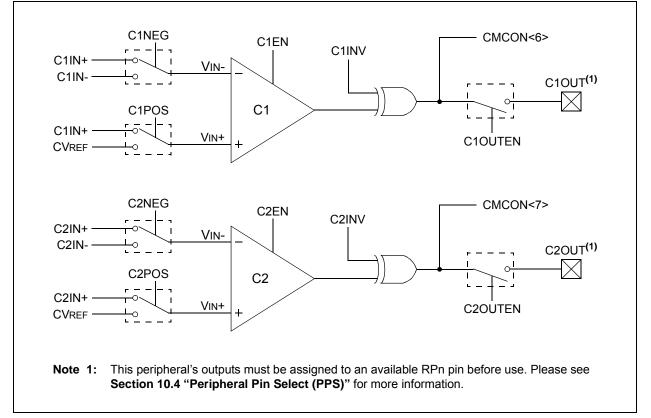
R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7 or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: CRC FIFO Full bit
	1 = FIFO is full 0 = FIFO is not full
bit 6	CRCMPT: CRC FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: CRC Start bit
	 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7 bit 0							


Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	ADRC: A	D Conversion Clock Source	e bit	

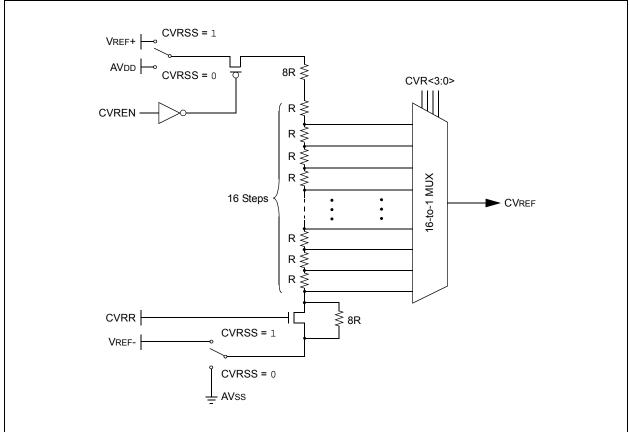
DIL 15	ADRU: A/D Conversion Clock Source bit
	1 = A/D internal RC clock
	0 = Clock derived from system clock
bit 14-13	Unimplemented: Read as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time bits
	11111 = 31 T AD
	• • • • •
	00001 = 1 TAD
	00000 = 0 TAD (not recommended)
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111
	····· = Reserved
	0100000
	00111111 = 64 • T CY
	•••••
	00000001 = 2 • TCY
	00000000 = TCY

22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, "Output Compare" (DS39706).

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

23.0 COMPARATOR VOLTAGE REFERENCE


Note:	This data sheet summarizes the features of						
	this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to						
	the "PIC24F Family Reference Manual",						
	"Comparator Voltage Reference						
	Module" (DS39709).						

23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U
	—	—	—	—	—	—	—
bit 23							bit 16
U	U	U	U	U	U	U	R
—	—	—	—	—		—	MAJRV2
bit 15							bit 8
R	R	U	U	U	R	R	R
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0
bit 7							bit 0

Legend: R = Read-only bit	U = Unimplemented bit	
---------------------------	-----------------------	--

- bit 23-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

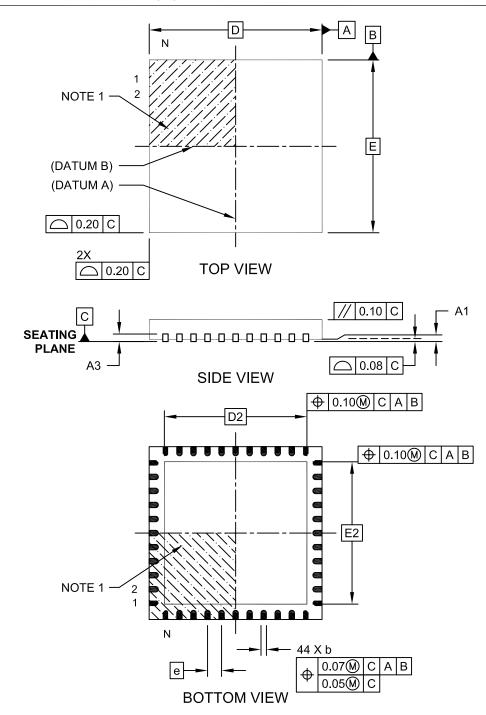
28-Lead SPDIP (.300")

Example

28-Lead SSOP (5.30 mm)

Example

28-Lead SOIC (7.50 mm)


Example

Legend:	XXX	Customer-specific information		
	Y	Year code (last digit of calendar year)		
	YY	Year code (last 2 digits of calendar year)		
	WW	Week code (week of January 1 is week '01')		
	NNN	Alphanumeric traceability code		
		Pb-free JEDEC designator for Matte Tin (Sn)		
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)		
		can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

Ρ

Packaging	
Details	
Marking	251
Parallel Master Port. See PMP.	
Peripheral Enable Bits	104
Peripheral Module Disable (PMD) Bits	104
Peripheral Pin Select (PPS)	107
Available Peripherals and Pins	
Configuration Control	109
Considerations for Use	110
Input Mapping	107
Mapping Exceptions	109
Output Mapping	109
Peripheral Priority	107
Registers	111–124
Pinout Descriptions	
PMSLP Bit	
and Wake-up Time	103
Power Supply Pins	
Power-Saving Features	103
Clock Frequency and Switching	103
Instruction-Based Modes	103
Selective Peripheral Power Control	104
Power-up Requirements	
Product Identification System	
Program Memory	
Access Using Table Instructions	
Address Construction	
Address Space	
Flash Configuration Words	30
Memory Map	
Organization	
Program Space Visibility (PSV)	
Program Verification	
Pulse-Width Modulation. See PWM.	

R

Reader Response	
Register Maps	
A/D Converter (ADC)	
Clock Control	
CPU Core	33
CRC	40
Dual Comparator	40
I ² C	
ICN	33
Input Capture	35
Interrupt Controller	34
NVM	42
Output Compare	
Pad Configuration	
Parallel Master/Slave Port	40
Peripheral Pin Select (PPS)	41
PMD	42
PORTA	38
PORTB	38
PORTC	38
Real-Time Clock and Calendar (RTCC)	40
SPI	
Timers	35
UART	

Registers	
AD1CHS (A/D Input Select)	198
AD1CON1 (A/D Control 1)	
AD1CON2 (A/D Control 2)	
AD1CON3 (A/D Control 3)	
AD1CSSL (A/D Input Scan Select)	
AD1PCFG (A/D Port Configuration)	
ALCFGRPT (Alarm Configuration)	181
ALMINSEC (Alarm Minutes and	
Seconds Value)	
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	
CLKDIV (Clock Divider)	
CMCON (Comparator Control)	
CORCON (CPU Control)	
CRCCON (CRC Control)	
CRCXOR (CRC XOR Polynomial)	192
CVRCON (Comparator Voltage	
Reference Control)	208
CW1 (Flash Configuration Word 1)	210
CW2 (Flash Configuration Word 2)	212
DEVID (Device ID)	213
DEVREV (Device Revision)	214
I2CxCON (I2Cx Control)	154
I2CxMSK (I2Cx Slave Mode Address Mask)	157
I2CxSTAT (I2Cx Status)	156
ICxCON (Input Capture x Control)	134
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	74
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG (Interrupt Control and Status)	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC18 (Interrupt Priority Control 18)	
IPC2 (Interrupt Priority Control 2)	
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
MINSEC (RTCC Minutes and Seconds Value)	
MTHDY (RTCC Month and Day Value)	
NVMCON (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tune)	