E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj48ga002-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ABLE 1-1. DEVICE FEATURES FOR THE FIC24FJ04GA004 FAMILT									
Features	16GA002	32GA002	48GA002	64GA002	16GA004	32GA004	48GA004	64GA004	
Operating Frequency	DC – 3	2 MHz		•					
Program Memory (bytes)	16K	32K	48K	64K	16K	32K	48K	64K	
Program Memory (instructions)	5,504	11,008	16,512	22,016	5,504	11,008	16,512	22,016	
Data Memory (bytes)	4096		8192		4096		8192		
Interrupt Sources (soft vectors/NMI traps)				4 (39		•			
I/O Ports		Ports	; А, В			Ports /	A, B, C		
Total I/O Pins		2	1			3	5		
Timers:									
Total Number (16-bit)				5(1)				
32-Bit (from paired 16-bit timers)				2					
Input Capture Channels	5 ⁽¹⁾								
Output Compare/PWM Channels				5(1)				
Input Change Notification Interrupt		2	1			3	0		
Serial Communications:									
UART				2(1)				
SPI (3-wire/4-wire)	2 ⁽¹⁾								
I ² C™	2								
Parallel Communications (PMP/PSP)				Ye	es				
JTAG Boundary Scan				Ye	es				
10-Bit Analog-to-Digital Module (input channels)		1	0			1	3		
Analog Comparators				2	2				
Remappable Pins		1	6			2	6		
Resets (and delays)			iction, Hai	nstruction dware Tra WRT, OS	ps, Confi	guration V			
Instruction Set		76 Base I	nstruction	s, Multiple	Address	ing Mode	Variations		
Packages	28-Pin	SPDIP/S	SOP/SOI	C/QFN		44-Pin Q	FN/TQFP		

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GA004 FAMILY

Note 1: Peripherals are accessible through remappable pins.

TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

	I	Pin Number				
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
T1CK	12	9	34	Ι	ST	Timer1 Clock.
TCK	17	14	13	-	ST	JTAG Test Clock Input.
TDI	21	18	35	-	ST	JTAG Test Data Input.
TDO	18	15	32	0	_	JTAG Test Data Output.
TMS	22	19	12	-	ST	JTAG Test Mode Select Input.
Vdd	13, 28	10, 25	28, 40	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins.
VDDCAP	20	17	7	Р	_	External Filter Capacitor Connection (regulator enabled).
VDDCORE	20	17	7	Р	—	Positive Supply for Microcontroller Core Logic (regulator disabled).
VREF-	3	28	20	-	ANA	A/D and Comparator Reference Voltage (low) Input.
VREF+	2	27	19	Ι	ANA	A/D and Comparator Reference Voltage (high) Input.
Vss	8, 27	5, 24	29, 39	Р	—	Ground Reference for Logic and I/O Pins.
Legend:	TTL = TTL inp	ut buffer			ST = 5	Schmitt Trigger input buffer

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffe $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		—			_	—	LVDIE
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_			_	CRCIE	U2ERIE	U1ERIE	_
bit 7							bit C
Legend:							
R = Reada	ble bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	'0' = Bit is cleared		own
bit 15-9 bit 8	LVDIE: Low- 1 = Interrupt 0 = Interrupt	Noted: Read as 'C Voltage Detect I request is enabl request is not en	nterrupt Enat ed nabled	ble Status bit			
bit 7-4	•	nted: Read as '0					
bit 3	1 = Interrupt	C Generator Inter request is enabl request is not er	ed	bit			
bit 2	U2ERIE: UA	RT2 Error Interr	upt Enable bi	t			
		request is enabl request is not en					
bit 1	1 = Interrupt	RT1 Error Interror request is enabl request is not en	ed	t			
bit 0	Unimpleme	nted: Read as 'o)'				

Legend:	U1RXIP2 R/W-1 SPF1IP2	U1RXIP1 R/W-0 SPF1IP1	U1RXIP0 R/W-0	—	SPI1IP2	SPI1IP1	SPI1IP0
U-0 — Dit 7 Legend:			B/M/ 0				
bit 7			D/M/ 0				bit
				U-0	R/W-1	R/W-0	R/W-0
	3FF IIFZ		SPF1IP0	0-0	T3IP2	T3IP1	T3IP0
Legend:		SELIET	SFFIIFU	_	T JIF Z		bit
R = Readable							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplement	ted: Read as ')'				
bit 14-12	-	UART1 Rece		Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interrup						
	-	ot source is dis					
bit 11	-	ted: Read as '					
bit 10-8		SPI1 Event In					
	111 = Interrup	ot is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interrup						
		ot source is dis					
bit 7	-	ted: Read as '					
bit 6-4		: SPI1 Fault In					
	111 = Interrup	ot is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1 ot source is dis	abled				
bit 3	-	ted: Read as '					
bit 2-0	-	mer3 Interrupt					
		ot is Priority 7 (-	/ interrupt)			
	•			,			
	•						
	• 001 = Interrup	nt is Priority 1					
		ot source is dis	abled				

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

	_	_	-				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	—	_	MI2C2P2	MI2C2P1	MI2C2P0
bit 15			·		·		bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	SI2C2P2	SI2C2P1	SI2C2P0		<u> </u>		—
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	111 = Interru • • 001 = Interru 000 = Interru	>: Master I2C2 pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as 'o	highest priority abled	•			
bit 6-4	-	Slave I2C2 E		Priority hits			
DIL 0-4	111 = Interru • • 001 = Interru	pt is Priority 1 pt is Priority 1 pt source is dis	highest priority	•			
bit 3-0	Unimplemen	ted: Read as '	כ'				

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits

REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—
						bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
						bit 0
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	
			U-0 U-0 R/W-1 — — SS1R4 bit W = Writable bit	— — — — U-0 U-0 R/W-1 R/W-1 — — — SS1R4 SS1R3 bit W = Writable bit U = Unimplem	— Image: Marce of the field of th	— —

bit 15-5 Unimplemented: Read as '0'

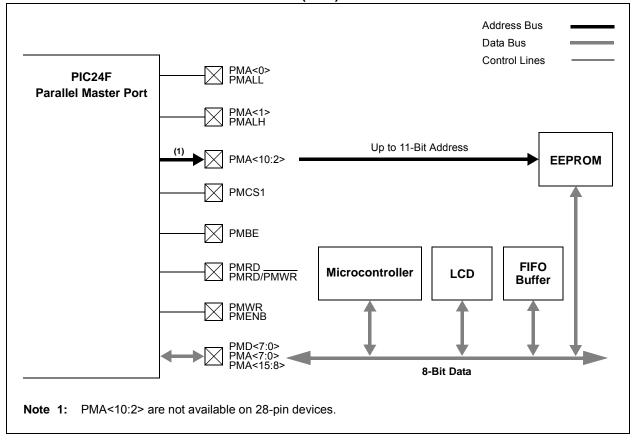
bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1' bit 3 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode) bit 2-1 PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity bit 0 STSEL: Stop Bit Selection bit 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
 - 3: Bit availability depends on pin availability.

18.0 PARALLEL MASTER PORT (PMP)

Note:	This data sheet summarizes the features of								
	this group of PIC24F devices. It is not								
	intended to be a comprehensive reference								
	source. For more information, refer to the								
	"PIC24F Family Reference Manual",								
	"Parallel Master Port (PMP)" (DS39713).								


The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Note: A number of the pins for the PMP are not present on PIC24FJ64GA004 devices. Refer to the specific device's pinout to determine which pins are available.

Key features of the PMP module include:

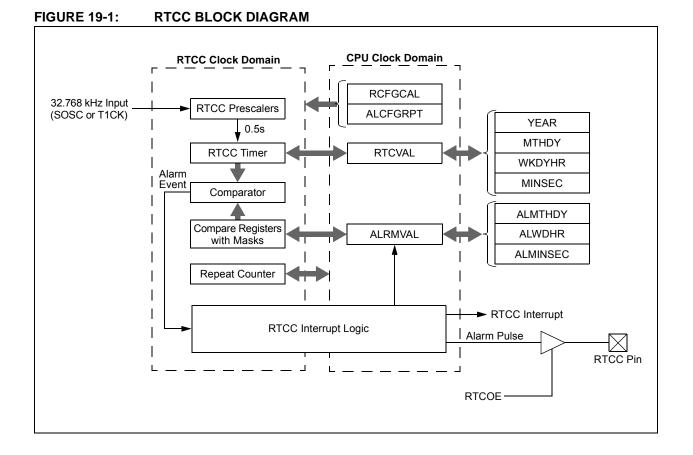
- Up to 16 Programmable Address Lines
- One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- · Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 18-1: PARALLEL MASTER PORT (PMP) MODULE OVERVIEW

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0
bit 15	1						bit 8
						D 444 A	5444.6
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	BUSY: Busy b	bit (Master mod	de only)				
	1 = Port is bu	usy (not useful	when the proce	essor stall is ac	tive)		
	0 = Port is no	ot busy					
bit 14-13	IRQM<1:0>:	Interrupt Reque	est Mode bits				
						written (Buffer	
						PSP mode onl	у)
			ed, processor s at the end of the				
		rupt is generate					
bit 12-11		ncrement Mod					
	11 = PSP rea	id and write bu	ffers auto-incre	ment (Legacy	PSP mode only	/)	
			0:0> by 1 every				
			0> by 1 every r	•	9		
hit 10			ment of addres	S			
bit 10		6-Bit Mode bit	taria 10 hita a	read envirite to	the Deterratio		
						ter invokes two er invokes one 8	
bit 9-8		-	lode Select bits		ne Bata regiote		
bit 0 0					MRE PMA <x.< td=""><td>)> and PMD<7:</td><td>·0>)</td></x.<>)> and PMD<7:	·0>)
					A <x:0> and P</x:0>		.0-)
	01 = Enhance	ed PSP, contro	l signals (PMR	D, PMWR, PM	CS1, PMD<7:0	> and PMA<1:0	
	• •		-			1 and PMD<7:0)>)
bit 7-6	WAITB<1:0>:	: Data Setup to	Read/Write W	ait State Config	guration bits ⁽¹⁾		
			tiplexed addres	•			
			Itiplexed addres				
			Itiplexed addres				
bit 5-2			Enable Strobe	-			
511 0 2		of additional 15		Walt Clate Col	ingulation bito		
		of additional 1					
		-	cles (operatior/				
					- 4 ¹ (1)		
bit 1-0	WAITE<1:0>:		er Strobe Wait	State Configura	ation dits."		
bit 1-0	11 = Wait of	4 Tcy	er Strobe Wait	State Configura	ation dits"		
bit 1-0		4 Тсү 3 Тсү	er Strobe Walt	State Configura	ation dits."		

REGISTER 18-2: PMMODE: PARALLEL PORT MODE REGISTER

Note 1: WAITBx and WAITEx bits are ignored whenever WAITM<3:0> = 0000.


19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	"Real-Time Clock and Calendar
	(RTCC)" (DS39696).

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods, with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (military time) display option
- · Calendar data as date, month and year
- Automatic, hardware-based day of week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- Time base input from Secondary Oscillator (SOSC) or the T1CK digital clock input (32.768 kHz)
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 19-1. The SOSC and RTCC will both remain running while the device is held in Reset with MCLR, and will continue running after MCLR is released.

© 2010-2013 Microchip Technology Inc.

R/W-0	U-0	R/C-0	U-0	U-0	U-0	R/W-0	R/W-0		
ADON ⁽¹⁾		ADSIDL				FORM1	FORM0		
bit 15							bit		
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R/W-0, HSC		
SSRC2	SSRC1	SSRC0	—		ASAM	SAMP	DONE		
bit 7							bit (
Legend:		C = Clearable	e bit	HSC = Hardv	vare Settable/C	Clearable bit			
R = Readabl	e bit	W = Writable		U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown		
			<i></i>						
bit 15		Operating Mode							
	1 = A/D Con 0 = A/D Con	verter module i	s operating						
bit 14		ited: Read as '	0'						
bit 13	-	Stop in Idle M							
		-		device enters lo	dle mode				
	0 = Continue	es module oper	ation in Idle me	ode					
bit 12-10	Unimplemer	ted: Read as '	0'						
bit 9-8	FORM<1:0>:	ORM<1:0>: Data Output Format bits							
	11 = Signed fractional (sddd dddd dd00 0000) 10 = Fractional (dddd dddd dd00 0000)								
		integer (ssss		,					
	-	(0000 00dd d		lada)					
bit 7-5	SSRC<2:0>:	Conversion Tr	gger Source S	elect bits					
			sampling and	starts conversi	on (auto-conve	ert)			
	110 = Reser								
	10x = Reser								
			s sampling and	starts convers	ion				
				ampling and sta		1			
bit 4-3		ng the SAMP b ited: Read as '	-	ng and starts co	nversion				
bit 2	-	Sample Auto-Si							
		•		t conversion co	moletes: SAM	P bit is auto-set			
	0 = Sampling	g begins when	SAMP bit is se	t					
bit 1	SAMP: A/D S	Sample Enable	bit						
		ple-and-Hold (\$ ple-and-Hold a		s sampling inpu ing	ıt				
bit 0		Conversion Stat	-	ing					
		ersion is done							
		ersion is NOT	done						
Note 1. T	he ADC1BUFn	registers do no	t retain their va		ON is cloared	Pood out any o	onvorsion		

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: The ADC1BUFn registers do not retain their values when ADON is cleared. Read out any conversion values from the buffer before disabling the module.

REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
r	JTAGEN	GCP	GWRP	DEBUG	r	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	r	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	r	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit			
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read as '0'		
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared	

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	1 = Code protection is disabled0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Reserved: Always maintain as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator EMUC1/EMUD1 pins are shared with PGC1/PGD1 10 = Emulator EMUC2/EMUD2 pins are shared with PGC2/PGD2 01 = Emulator EMUC3/EMUD3 pins are shared with PGC3/PGD3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Reserved
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	WUTSEL1(1)	WUTSEL0 ⁽¹⁾	SOSCSEL1(1)	SOSCSEL0 ⁽¹⁾	FNOSC2	FNOSC1	FNOSC0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	r	R/PO-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	OSCIOFCN	IOL1WAY	r	I2C1SEL	POSCMD1	POSCMD0
bit 7							bit 0

Legend:	r = Reserved bit			
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read as '0'		
-n = Value when device is u	inprogrammed	'1' = Bit is set	'0' = Bit is cleared	

bit 23-16	Unimplemented: Read as '1'
bit 15	IESO: Internal External Switchover bit
	 1 = IESO mode (Two-Speed Start-up) is enabled 0 = IESO mode (Two-Speed Start-up) is disabled
bit 14-13	WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits ⁽¹⁾
	 11 = Default regulator start-up time is used 01 = Fast regulator start-up time is used x0 = Reserved; do not use
bit 12-11	SOSCSEL<1:0>: Secondary Oscillator Power Mode Select bits ⁽¹⁾
	 11 = Default (High Drive Strength) mode 01 = Low-Power (Low Drive Strength) mode x0 = Reserved; do not use
bit 10-8	FNOSC<2:0>: Initial Oscillator Select bits
	 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	OSCIOFCN: OSCO Pin Configuration bit
	If POSCMD<1:0> = 11 or 00:1 = OSCO/CLKO/RA3 functions as CLKO (Fosc/2)0 = OSCO/CLKO/RA3 functions as port I/O (RA3)If POSCMD<1:0> = 10 or 01:OSCIOFCN has no effect on OSCO/CLKO/RA3.
Nata di	These bits are implemented only in devises with a major ellipse revision level of D or later (DD)/DD)

Note 1: These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). Refer to **Section 28.0** "**Packaging Information**" in the device data sheet for the location and interpretation of product date codes.

25.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

26.0 INSTRUCTION SET SUMMARY

Note: This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 26-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 26-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

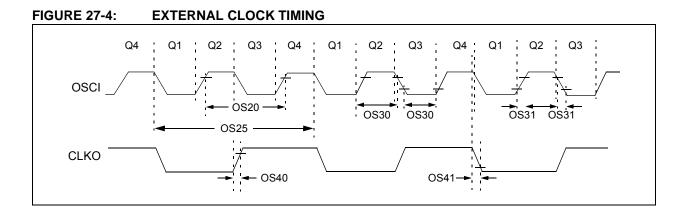
- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier


The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

TABLE 27-15: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions:2.0 to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le Ta \le +125^{\circ}C$ for Extended				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	Fosc	External CLKI Frequency	DC	_	32	MHz	EC, $-40^{\circ}C \le TA \le +85^{\circ}C$
		(External clocks allowed	4	—	8	MHz	ECPLL, $-40^{\circ}C \le TA \le +85^{\circ}C$
		only in EC mode)	DC	—	24	MHz	EC, $-40^{\circ}C \le TA \le +125^{\circ}C$
			4	—	6	MHz	ECPLL, -40°C \leq TA \leq +125°C
		Oscillator Frequency	3	_	10	MHz	ХТ
			3	—	8	MHz	XTPLL, $-40^{\circ}C \le TA \le +85^{\circ}C$
			10	—	32	MHz	HS, $-40^{\circ}C \le TA \le +85^{\circ}C$
			31	—	33	kHz	SOSC
			3	—	6	MHz	XTPLL, $-40^{\circ}C \le TA \le +125^{\circ}C$
			10	—	24	MHz	HS, $-40^{\circ}C \le TA \le +125^{\circ}C$
OS20	Tosc	Tosc = 1/Fosc	_	_	_	_	See Parameter OS10 for
							Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns	
OS30	TosL,	External Clock In (OSCI)	0.45 x Tosc	_	_	ns	EC
	TosH	High or Low Time					
OS31	TosR,	External Clock In (OSCI)	_		20	ns	EC
	TosF	Rise or Fall Time					
OS40	TckR	CLKO Rise Time ⁽³⁾		6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

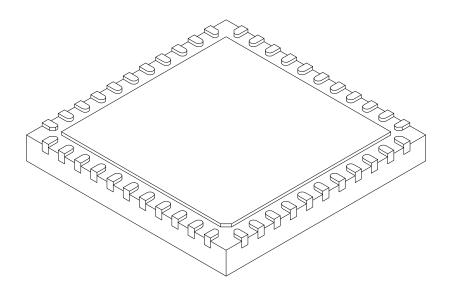

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Condition		Conditions			
Clock Parameters								
AD50	Tad	A/D Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	tRC	A/D Internal RC Oscillator Period	—	250	—	ns		
			Conv	ersion R	ate			
AD55	tCONV	Conversion Time		12		TAD		
AD56	FCNV	Throughput Rate		_	500	ksps	$AVDD \ge 2.7V$	
AD57	t SAMP	Sample Time		1		Tad		
Clock Parameters								
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	Tad		

TABLE 27-21: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

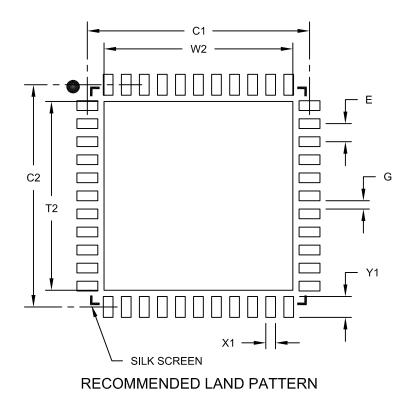
	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	А	44			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	Е		8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads		0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
Fror	n: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Арр	ication (optional):						
Wou	ld you like a reply?YN						
Dev	ce: PIC24FJ64GA004 Family	Literature Number: DS39881E					
Que	stions:						
1.	What are the best features of this document?						
2.	2. How does this document meet your hardware and software development needs?						
3.	. Do you find the organization of this document easy to follow? If not, why?						
4.	What additions to the document do you think would enhance the structure and subject?						
5.	What deletions from the document could be made without affecting the overall usefulness?						
6.	s there any incorrect or misleading information (what	and where)?					
•							
7.	How would you improve this document?						
•							