

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj48ga002t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADnPCFG register(s), or clearing all bit in the ANSx registers.

All PIC24F devices will have either one or more ADnPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to **Section 21.0 "10-Bit High-Speed A/D Converter"** for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADnPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADnPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	—	—	—	—		TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	TRISA8(1)	TRISA7 ⁽¹⁾		_	TRISA4	TRISA3(2)	TRISA2(3)	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	_	_	RA10 ⁽¹⁾	RA9 ⁽¹⁾	RA8 ⁽¹⁾	RA7 ⁽¹⁾	_	_	RA4	RA3 ⁽²⁾	RA2 ⁽³⁾	RA1	RA0	0000
LATA	02C4	_	_	_	_	_	LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	LATA8 ⁽¹⁾	LATA7 ⁽¹⁾	_	_	LATA4	LATA3 ⁽²⁾	LATA2 ⁽³⁾	LATA1	LATA0	0000
ODCA	02C6	—	—	—	—		ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	ODA8 ⁽¹⁾	ODA7 ⁽¹⁾		_	ODA4	ODA3 ⁽²⁾	ODA2 ⁽³⁾	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on 28-pin devices; read as '0'.

2: These bits are only available when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise, read as '0'.

3: These bits are only available when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00 or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	0000
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC ⁽¹⁾	02D0	_		—	_	—	—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC ⁽¹⁾	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	0000
LATC ⁽¹⁾	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	0000
ODCC ⁽¹⁾	02D6	—	—	—	_	—	—	ODC9	OSC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.Bits are not available on 28-pin devices; read as '0'.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC		—		_	_	—	—	—	—	—	—	—	_	-	RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

					01110													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	-	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		-	_	—	_		_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	—	_	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	001F
RPINR3	0686	_	—	_	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	_	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	1F1F
RPINR4	0688		—	_	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0		_	_	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	1F1F
RPINR7	068E		_	_	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0		_	_	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	1F1F
RPINR8	0690		—	_	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0		_	_	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	1F1F
RPINR9	0692		—	_	_	_	_	_	_		_	_	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	001F
RPINR11	0696		—	_	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		_	_	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	1F1F
RPINR18	06A4		—	_	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0		_	_	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	1F1F
RPINR19	06A6		—	_	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0		_	_	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	1F1F
RPINR20	06A8		—	_	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0		_	_	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	1F1F
RPINR21	06AA		—	—	_	_	_	—	—		_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	001F
RPINR22	06AC	_	—	—	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	-	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	1F1F
RPINR23	06AE	_	—	—	_	—	—	—	—	-	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	001F
RPOR0	06C0	_	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	-	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	-	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	-	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	—	—	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	-	—	—	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	—	—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	-	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	—	—		RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	—		RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	—	—	RP17R4 ⁽¹⁾	RP17R3 ⁽¹⁾	RP17R2 ⁽¹⁾	RP17R1 ⁽¹⁾	RP17R0 ⁽¹⁾	_	—		RP16R4 ⁽¹⁾	RP16R3 ⁽¹⁾	RP16R2 ⁽¹⁾	RP16R1 ⁽¹⁾	RP16R0 ⁽¹⁾	0000
RPOR9	06D2	—	—	—	RP19R4 ⁽¹⁾	RP19R3 ⁽¹⁾	RP19R2 ⁽¹⁾	RP19R1 ⁽¹⁾	RP19R0 ⁽¹⁾	_	—	_	RP18R4 ⁽¹⁾	RP18R3 ⁽¹⁾	RP18R2 ⁽¹⁾	RP18R1 ⁽¹⁾	RP18R0 ⁽¹⁾	0000
RPOR10	06D4	—	—	—	RP21R4 ⁽¹⁾	RP21R3 ⁽¹⁾	RP21R2 ⁽¹⁾	RP21R1 ⁽¹⁾	RP21R0 ⁽¹⁾	_	—	_	RP20R4 ⁽¹⁾	RP20R3 ⁽¹⁾	RP20R2 ⁽¹⁾	RP20R1 ⁽¹⁾	RP20R0 ⁽¹⁾	0000
RPOR11	06D6	—	—	—	RP23R4 ⁽¹⁾	RP23R3 ⁽¹⁾	RP23R2 ⁽¹⁾	RP23R1 ⁽¹⁾	RP23R0 ⁽¹⁾	_	—	_	RP22R4 ⁽¹⁾	RP22R3 ⁽¹⁾	RP22R2 ⁽¹⁾	RP22R1 ⁽¹⁾	RP22R0 ⁽¹⁾	0000
RPOR12	06D8	_	_	_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1(1)	RP25R0 ⁽¹⁾	_	_	_	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	0000

TABLE 4-21: PERIPHERAL PIN SELECT REGISTER MAP (PPS)

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 These bits are only available on 44-pin devices; otherwise, they read as '0'.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
NSTDIS		—	—	—	—	—	—
bit 15		•		•			bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
		—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15 bit 14-5 bit 4 bit 3 bit 2	NSTDIS: Inter 1 = Interrupt r 0 = Interrupt r Unimplement MATHERR: A 1 = Overflow t 0 = Overflow t ADDRERR: A 1 = Address e 0 = Address e STKERR: Sta 1 = Stack error	rrupt Nesting D nesting is disab nesting is enab ted: Read as 'd withmetic Error trap has occurr trap has not oc address Error T error trap has o error trap has n neck Error Trap S or trap has occu	isable bit led o' Trap Status bit red curred rap Status bit ccurred ot occurred Status bit urred	t			
bit 1 bit 0	0 = Stack error OSCFAIL: Os 1 = Oscillator 0 = Oscillator Unimplement	failure trap has occurs scillator Failure failure trap has failure trap has failure trap has	Trap Status bit s occurred not occurred				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
					_	_	_
bit 15			•		·	·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7			•			•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-7	Unimplemen	ted: Read as '	כי				
bit 6-4	SPI2IP<2:0>:	SPI2 Event In	terrupt Priority	bits			
	111 = Interrup	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כי				
bit 2-0	SPF2IP<2:0>	: SPI2 Fault Int	terrupt Priority	bits			
	111 = Interrup	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	_	_		—					
bit 15			•				bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
—	OC5IP2	OC5IP1	OC5IP0	—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-7	Unimplemen	ted: Read as '	כ'								
bit 6-4	OC5IP<2:0>:	Output Compa	are Channel 5 I	nterrupt Priority	y bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	•										
	001 = Interru	ot is Priority 1									
	000 = Interru	ot source is dis	abled								

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	PMPIP2	PMPIP1	PMPIP0	—	—	—	—
bit 7					•	•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6-4	PMPIP<2:0>:	Parallel Maste	r Port Interrup	t Priority bits			
	111 = Interrup	ot is Priority 7 (I	highest priority	interrupt)			
	•						
	•						
	•						
	001 = Interrup	ot is Priority 1	abled				
L:1 0 0							
DIT 3-0	Unimplemen	tea: Read as ')				

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.2 Configuring Analog Port Pins

The use of the AD1PCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

10.2.2 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins are always to be avoided. Table 10-1 summarizes the input capabilities. Refer to **Section 27.1 "DC Characteristics"** for more details.

TABLE 10-1: INPUT VOLTAGE LEVELS

Port or Pin	Tolerated Input	Description
PORTA<4:0>	Vdd	Only VDD input levels
PORTB<15:12>		are tolerated.
PORTB<4:0>		
PORTC<2:0> ⁽¹⁾		
PORTA<10:7> ⁽¹⁾	5.5V	Tolerates input levels
PORTB<11:5>		above VDD, useful for
PORTC<9:3>(1)		most standard logic.

Note 1: Unavailable on 28-pin devices.

10.3 Input Change Notification

The Input Change Notification function of the I/O ports allows the PIC24FJ64GA004 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 22 external signals that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

When the internal pull-up is selected, the pin pulls up to VDD - 0.7V (typical). Make sure that there is no external pull-up source when the internal pull-ups are enabled, as the voltage difference can cause a current path.

Note: Pull-ups on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 10-1:	PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

FIGURE 18-2: LEGACY PARALLEL SLAVE PORT EXAMPLE

FIGURE 18-3: ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE

TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION

PMA<1:0>	Output Register (Buffer)	Input Register (Buffer)
00	PMDOUT1<7:0> (0)	PMDIN1<7:0> (0)
01	PMDOUT1<15:8> (1)	PMDIN1<15:8> (1)
10	PMDOUT2<7:0> (2)	PMDIN2<7:0> (2)
11	PMDOUT2<15:8> (3)	PMDIN2<15:8> (3)

FIGURE 18-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)

NOTES:

20.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", "Programmable Cyclic Redundancy Check (CRC)" (DS39714).

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the X<15:1> bits (CRCXOR<15:1>) and the PLEN<3:0> bits (CRCCON<3:0>), respectively.

FIGURE 20-1: CRC BLOCK DIAGRAM

Consider the following equation:

EQUATION 20-1: CRC POLYNOMIAL

 $x^{16} + x^{12} + x^5 + 1 \\$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 20-1.

TABLE 20-1:	EXAMPLE CRC SETUP
-------------	--------------------------

Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000

Note that for the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the equation. The 0 bit, required by the equation, is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0 bit or the 16th bit.

A simplified block diagram of the module is shown in Figure 20-1. The general topology of the shift engine is shown in Figure 20-2.

20.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT

REGISTER 20-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode0 = Continues module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7 or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: CRC FIFO Full bit
	1 = FIFO is full 0 = FIFO is not full
bit 6	CRCMPT: CRC FIFO Empty Bit
	1 = FIFO is empty 0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: CRC Start bit
	1 = Starts CRC serial shifter0 = CRC serial shifter is turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$TAD = TCY \cdot (ADCS + 1)$$

 $ADCS = \frac{TAD}{TCY} - 1$

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

23.0 COMPARATOR VOLTAGE REFERENCE

Note:	This data sheet summarizes the features of						
	this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to						
	the "PIC24F Family Reference Manual",						
	"Comparator Voltage Reference						
	Module" (DS39709).						

23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	—	—		—
bit 23							bit 16
U	U	U	U	U	U	U	R
—	—	—	—	—	—	—	MAJRV2
bit 15							bit 8
R	R	U	U	U	R	R	R
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0
bit 7							bit 0

- bit 23-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

25.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

27.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ64GA004 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ64GA004 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +135°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	-0.3V to +6.0V
Voltage on VDDCORE with respect to Vss	-0.3V to +3.0V
Maximum current out of Vss pin	
Maximum current into VDD pin (Note 1)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by all ports	
Maximum current sourced by all ports (Note 1)	
Note 1: Maximum allowable current is a function of device maximum power dissipation	(see Table 27-1)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	1.27 BSC		
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B