

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj48ga002t-i-ss

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

	Pin Number					
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
OSCI	9	6	30	I	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0	ANA	Main Oscillator Output Connection.
PGEC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator and ICSP™ Programming
PGEC2	22	19	9	I/O	ST	Clock.
PGEC3	14	12	42	I/O	ST	
PGED1	4	1	21	I/O	ST	In-Circuit Debugger/Emulator and ICSP Programming
PGED2	21	18	8	I/O	ST	Data.
PGED3	15	11	41	I/O	ST	
PMA0	10	7	3	I/O	ST/TTL	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	12	9	2	I/O	ST/TTL	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	—	_	27	0	_	Parallel Master Port Address (Demultiplexed Master
PMA3	—	_	38	0	_	modes).
PMA4	—	_	37	0		
PMA5	—	_	4	0	_	
PMA6	—	_	5	0	_	
PMA7	—	_	13	0	_	
PMA8	—	_	32	0	_	
PMA9	—	_	35	0	_	
PMA10	—		12	0	_	
PMA11	—	_	—	0	_	
PMA12	—	_	—	0	_	
PMA13	—	_	_	0	_	
PMBE	11	8	36	0	_	Parallel Master Port Byte Enable Strobe.
PMCS1	26	23	15	0	_	Parallel Master Port Chip Select 1 Strobe/Address Bit 14.
PMD0	23	20	10	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	22	19	9	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	21	18	8	I/O	ST/TTL	
PMD3	18	15	1	I/O	ST/TTL	
PMD4	17	14	44	I/O	ST/TTL	
PMD5	16	13	43	I/O	ST/TTL	
PMD6	15	12	42	I/O	ST/TTL	
PMD7	14	11	41	I/O	ST/TTL	
PMRD	24	21	11	0		Parallel Master Port Read Strobe.
PMWR	25	22	14	0	_	Parallel Master Port Write Strobe.
Legend:	TTL = TTL inp ANA = Analog	out buffer level input/o	utput		ST = S I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. Depending on the particular device, this is done by setting all bits in the ADnPCFG register(s), or clearing all bit in the ANSx registers.

All PIC24F devices will have either one or more ADnPCFG registers or several ANSx registers (one for each port); no device will have both. Refer to **Section 21.0 "10-Bit High-Speed A/D Converter"** for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

- For devices with an ADnPCFG register, clear the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.
- For devices with ANSx registers, set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGECx/PGEDx pair, at any time.

When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ADnPCFG or ANSx registers. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	—	—	—	—		TRISA10 ⁽¹⁾	TRISA9 ⁽¹⁾	TRISA8(1)	TRISA7 ⁽¹⁾		_	TRISA4	TRISA3(2)	TRISA2(3)	TRISA1	TRISA0	079F
PORTA	02C2	_	_	_	_	_	RA10 ⁽¹⁾	RA9 ⁽¹⁾	RA8 ⁽¹⁾	RA7 ⁽¹⁾	_	_	RA4	RA3 ⁽²⁾	RA2 ⁽³⁾	RA1	RA0	0000
LATA	02C4	_	_	_	_	_	LATA10 ⁽¹⁾	LATA9 ⁽¹⁾	LATA8 ⁽¹⁾	LATA7 ⁽¹⁾	_	_	LATA4	LATA3 ⁽²⁾	LATA2 ⁽³⁾	LATA1	LATA0	0000
ODCA	02C6	—	—	—	—		ODA10 ⁽¹⁾	ODA9 ⁽¹⁾	ODA8 ⁽¹⁾	ODA7 ⁽¹⁾		_	ODA4	ODA3 ⁽²⁾	ODA2 ⁽³⁾	ODA1	ODA0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on 28-pin devices; read as '0'.

2: These bits are only available when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise, read as '0'.

3: These bits are only available when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00 or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise, read as '0'.

TABLE 4-13: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	0000
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC ⁽¹⁾	02D0	_		—	_	—	—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC ⁽¹⁾	02D2	_	_	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	0000
LATC ⁽¹⁾	02D4	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	0000
ODCC ⁽¹⁾	02D6	—	—	—	_	—	—	ODC9	OSC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.Bits are not available on 28-pin devices; read as '0'.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC		—		_	_	—	—	—	—	—	—	—	_	-	RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	"Program Memory" (DS39715).

The PIC24FJ64GA004 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 2.25V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ64GA004 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGCx and PGDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

© 2010-2013 Microchip Technology Inc.

5.5.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-4).

EXAMPLE 5-4: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

;	Setup a p	pointer to data Program Memory		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize a register with program memory address
	MOV	#LOW_WORD_N, W2	;	
	MOV	#HIGH_BYTE_N, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	Setup NVI	MCON for programming one word t	20	data Program Memory
	MOV	#0x4003, W0	;	
	MOV	W0, NVMCON	;	Set NVMOP bits to 0011
	DISI	#5	;	Disable interrupts while the KEY sequence is written
	MOV	#0x55, W0	;	Write the key sequence
	MOV	W0, NVMKEY		
	MOV	#0xAA, W0		
	MOV	W0, NVMKEY		
	BSET	NVMCON, #WR	;	Start the write cycle
	NOP		;	2 NOPs required after setting WR
	NOP		;	

7.3 Interrupt Control and Status Registers

The PIC24FJ64GA004 family of devices implements a total of 29 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC12, IPC15, IPC16 and IPC18
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU priority level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-31, in the following pages.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	_	_	—	_
bit 15	·						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_	_	_	INT2EP	INT1EP	INT0EP
bit 7	·						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector -	Table bit			
	1 = Uses Alte	rnate Interrupt	Vector Table				
	0 = Uses stan	dard (default) I	nterrupt Vecto	r Table			
bit 14	DISI: DISI In	struction Status	s bit				
	1 = DISI inst	ruction is active	e etivo				
bit 12 2		tod: Pood os '	, ,				
bit 2		real Interrupt 2	, Edgo Dotoct [Polarity Soloct I	hit		
Dit 2	1 = Interrupt c	n negative edg	Luge Delect i	olarity Select	on		
	0 = Interrupt o	on positive edge	9				
bit 1	INT1EP: Exte	rnal Interrupt 1	Edge Detect F	Polarity Select I	bit		
	1 = Interrupt o	on negative edg	je				
	0 = Interrupt o	on positive edge	e				
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect F	Polarity Select I	bit		
	1 = Interrupt c	on negative edg	je				
	0 = interrupt c	on positive edge	9				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
—	—	PMPIF	—	—	_	OC5IF	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	_		_	SPI2IF	SPF2IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemen	ted: Read as '	כ'				
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit			
	1 = Interrupt	request has occ	curred				
		request has not	occurred				
bit 12-10	Unimplemen	ted: Read as '),				
bit 9	OC5IF: Outp	ut Compare Ch	annel 5 Interru	pt Flag Status I	oit		
	1 = Interrupt 0 = Interrupt	request has occ request has not	curred				
bit 8	Unimplemen	ted: Read as ')'				
bit 7	IC5IF: Input (Capture Channe	el 5 Interrupt F	lag Status bit			
	1 = Interrupt	request has occ	curred	lag clatac sit			
	0 = Interrupt	request has not	occurred				
bit 6	IC4IF: Input (Capture Channe	el 4 Interrupt F	lag Status bit			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				
bit 5	IC3IF: Input (Capture Channe	el 3 Interrupt F	lag Status bit			
	1 = Interrupt	request has occ	curred				
h# 4 0		request has not	occurred				
DIT 4-2		ited: Read as					
DIT	SPIZIF: SPIZ	Event Interrup	Flag Status D	IT			
	1 = Interrupt 0 = Interrupt	request has occ	occurred				
bit 0	SPF2IF: SPI	2 Fault Interrupt	Flag Status bi	it			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
	RTCIF	—	_	—	_	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	—	—	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as '	0'				
bit 14	RTCIF: Rea	I-Time Clock/Ca	lendar Interrup	ot Flag Status bi	it		
	1 = Interrupt	t request has oc	curred				
	0 = Interrupt	t request has no	t occurred				
bit 13-3	Unimpleme	nted: Read as '	0'				
bit 2	MI2C2IF: Ma	aster I2C2 Even	t Interrupt Flag	g Status bit			
	1 = Interrupt	t request has oc	curred				
	0 = Interrupt	t request has no	t occurred				
bit 1	SI2C2IF: Sla	ave I2C2 Event	Interrupt Flag S	Status bit			
	1 = Interrupt	t request has oc	curred				
	0 = Interrupt	t request has not	t occurred				
bit 0	Unimpleme	nted: Read as '	0'				

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
					_	_	
bit 15			•		·	·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7			•			•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-7	Unimplemen	ted: Read as '	כי				
bit 6-4	SPI2IP<2:0>:	SPI2 Event In	terrupt Priority	bits			
	111 = Interrup	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	כי				
bit 2-0	SPF2IP<2:0>	: SPI2 Fault Int	terrupt Priority	bits			
	111 = Interrup	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1					
	000 = Interrup	pt source is dis	abled				

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

10.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"I/O* Ports with Peripheral Pin Select (PPS)" (DS39711).

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless, regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '11111' and all RPORx registers reset to '00000', all Peripheral Pin Select inputs are tied to RP31 and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to						
	RP31, RP31 does not have to exist on a						
	device for the registers to be reset to it.						

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output. The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 10-2 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Registers __builtin_write_OSCCONL(OSCCON & 0xBF); // Configure Input Functions (Table 10-2)) // Assign UIRX To Pin RP0 RPINR18bits.UIRXR = 0; // Assign UICTS To Pin RP1 RPINR18bits.UICTSR = 1; // Configure Output Functions (Table 10-3) // Assign UITX To Pin RP2 RPOR1bits.RP2R = 3; // Assign UIRTS To Pin RP3 RPOR1bits.RP3R = 4; // Lock Registers __builtin_write_OSCCONL(OSCCON | 0x40); NOTES:

© 2010-2013 Microchip Technology Inc.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC	
ACKSTAT	(1) TRSTAT	_	_	_	BCL	GCSTAT	ADD10	
bit 15							bit 8	
R/C-0, HS	S R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	
bit 7							bit 0	
Legend:		C = Clearabl	e bit	HS = Hardware	e Settable bit			
R = Reada	ble bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'		
-n = Value	at POR	'1' = Bit is set '0' = Bit is cleared			red	x = Bit is unknown		
HSC = Har	dware Settable/C	learable bit						
bit 15	ACKSTAT: A	cknowledge S	tatus bit ⁽¹⁾					
	1 = NACK wa	is detected las	st					
	0 = ACK was Hardware is s	detected last	the end of Ack	nowledge				
hit 14	TRSTAT. Tran	nemit Status hi	t (when onera	ting as l ² C™ ma	ster annlicable	to master trans		
	1 = Master tra	ansmit is in nr	naress (8 hits	+ ACK)				
	0 = Master tra	ansmit is not ir	n progress					
	Hardware is se	et at the beginn	ing of master t	ransmission. Har	dware is clear at	the end of slave	Acknowledge.	
bit 13-11	Unimplemen	ted: Read as	'0'					
bit 10	BCL: Master	Bus Collision	Detect bit					
	1 = A bus col	lision has bee	n detected du	ring a master op	eration			
	0 = No collisio	0 = No collision						
hit Q		noral Call Stat	ue hit	JIISION.				
Dit 9	1 = General c							
	0 = General c	0 = General call address was received						
	Hardware is s	et when an ad	dress matches	s the general cal	l address. Hardv	vare is clear at	Stop detection.	
bit 8	ADD10: 10-B	ADD10: 10-Bit Address Status bit						
	1 = 10-bit add	lress was mat	ched					
	0 = 10-bit add	fress was not	matched	of motobod 10 l	ait address. Hard	lwara ia alaar at	Stop dotaction	
bit 7			n Dotoct hit			iwale is clear at	Stop detection.	
	$1 = \Delta n$ attempt	to write to th	n Delect bit	nister failed her	cause the l^2 C m	odule is busy		
	0 = No collision	on on the second				ouule is busy		
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).						e).	
bit 6	12COV: 12Cx	Receive Over	flow Flag bit					
	1 = A byte was received while the I2CxRCV register is still holding the previous byte							
	0 = No overflow							
	naiuware IS S					by Sulwale).		
Note 1:	e 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data either as a glove are master. Panding ACKSTAT after resulting address or data between the state of ACKSTAT when receiving data either as a glove are master.							

19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note:	This data sheet summarizes the features of							
	this group of PIC24F devices. It is not							
	intended to be a comprehensive reference							
	source. For more information, refer to the							
	"PIC24F Family Reference Manual",							
	"Real-Time Clock and Calendar							
	(RTCC)" (DS39696).							

The Real-Time Clock and Calendar (RTCC) provides on-chip, hardware-based clock and calendar functionality with little or no CPU overhead. It is intended for applications where accurate time must be maintained for extended periods, with minimal CPU activity and with limited power resources, such as battery-powered applications. Key features include:

- Time data in hours, minutes and seconds, with a granularity of one-half second
- 24-hour format (military time) display option
- · Calendar data as date, month and year
- Automatic, hardware-based day of week and leap year calculations for dates from 2000 through 2099
- Time and calendar data in BCD format for compact firmware
- Highly configurable alarm function
- External output pin with selectable alarm signal or seconds "tick" signal output
- Time base input from Secondary Oscillator (SOSC) or the T1CK digital clock input (32.768 kHz)
- · User calibration feature with auto-adjust

A simplified block diagram of the module is shown in Figure 19-1.The SOSC and RTCC will both remain running while the device is held in Reset with MCLR, and will continue running after MCLR is released.

© 2010-2013 Microchip Technology Inc.

REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'					
Legend:								
bit 7 bit 0								
X7	X6	X5	X4	X3	X2	X1	—	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
bit 15							bit 8	
X15	X14	X13	X12	X11	X10	X9	X8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U	
—	—	—	—	—			—	
bit 23							bit 16	
U	U	U	U	U	U	U	R	
—	—	—	—	—	—	—	MAJRV2	
bit 15	bit 15 bit 8							
R	R	U	U	U	R	R	R	
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0	
bit 7							bit 0	

- bit 23-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

NOTES: