

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj48ga004t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	I	Pin Number				
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
CN0	12	9	34	I	ST	Interrupt-on-Change Inputs.
CN1	11	8	33	Ι	ST	
CN2	2	27	19	Ι	ST	
CN3	3	28	20	I	ST	
CN4	4	1	21	I	ST	
CN5	5	2	22	Ι	ST	
CN6	6	3	23	I	ST	
CN7	7	4	24	I	ST	
CN8	_	_	25	Ι	ST	
CN9	—	_	26	I	ST	
CN10	_	_	27	Ι	ST	
CN11	26	23	15	Ι	ST	
CN12	25	22	14	Ι	ST	
CN13	24	21	11	Ι	ST	
CN14	23	20	10	Ι	ST	
CN15	22	19	9	Ι	ST	
CN16	21	18	8	Ι	ST	
CN17	_	_	3	Ι	ST	
CN18	_	_	2	Ι	ST	
CN19	_	_	5	Ι	ST	
CN20	_	_	4	Ι	ST	
CN21	18	15	1	Ι	ST	
CN22	17	14	44	Ι	ST	
CN23	16	13	43	Ι	ST	
CN24	15	12	42	Ι	ST	
CN25	—	—	37	I	ST]
CN26	_	_	38	I	ST	1
CN27	14	11	41	I	ST]
CN28	_	_	36	I	ST	1
CN29	10	7	31	I	ST	1
CN30	9	6	30	I	ST	1
CVREF	25	22	14	0	ANA	Comparator Voltage Reference Output.
DISVREG	19	16	6	Ι	ST	Voltage Regulator Disable.
INT0	16	13	43	I	ST	External Interrupt Input.
MCLR	1	26	18	I	ST	Master Clear (device Reset) Input. This line is brought lov to cause a Reset.
Legend:	TTL = TTL inp ANA = Analog		utput		ST = S I ² C™	to cause a Reset. Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	_	_	—	_		_	DC
bit 15							bit 8
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown
bit 15-9	-	ted: Read as '0					
bit 8		f Carry/Borrow I					
		out from the 4th sult occurred	low-order bit (for byte-sized da	ata) or 8th low-	order bit (for we	ord-sized data
			h or 8th low-o	rder bit of the re	sult has occurr	red	
bit 7-5	IPL<2:0>: CF	PU Interrupt Price	ority Level Sta	itus bits ^(1,2)			
				i); user interrupts	s are disabled		
		nterrupt Priority					
		nterrupt Priority nterrupt Priority					
		nterrupt Priority					
	010 = CPU Ir	nterrupt Priority	Level is 2 (10)			
		nterrupt Priority nterrupt Priority					
bit 4		Loop Active bit					
		oop in progress					
		oop not in prog					
bit 3	N: ALU Nega	itive bit					
	1 = Result wa		, .	<i></i> 、			
1.11.0		as non-negative	(zero or posi	tive)			
bit 2	OV: ALU Ove		uned (O'e eero	nlanaant) arithma	atia in this avith	motio operatio	_
		occurred for sig		plement) arithm	etic in this anth	imetic operatio	n
bit 1	Z: ALU Zero	bit					
				as set it at some ets the Z bit has o			sult)
bit 0	C: ALU Carry	//Borrow bit					
				bit of the result o bit of the result			
Note 1: 7	The IPL Status bi	its are read-only	when NSTD	IS (INTCON1<1	5>) = 1.		
	The IPL Status bi	-				n the CPU Inte	errupt Priority
1	aval (IDL) Thay	value in parenth	oooo indiaata	a tha IDI when			-

2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

			•••••		LOIOI													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output 0	Compare 1	Secondary	Register							FFFF
OC1R	0182							Οι	tput Comp	are 1 Regis	ter							FFFF
OC1CON	0184	_	—	OCSIDL	_	_	—	—	_	_	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC2RS	0186							Output 0	Compare 2	Secondary	Register							FFFF
OC2R	0188							Οι	tput Comp	are 2 Regis	ter							FFFF
OC2CON	018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC3RS	018C							Output 0	Compare 3	Secondary	Register							FFFF
OC3R	018E							Οι	tput Comp	are 3 Regis	ter							FFFF
OC3CON	0190	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC4RS	0192							Output 0	Compare 4	Secondary	Register							FFFF
OC4R	0194							Οι	tput Comp	are 4 Regis	ter							FFFF
OC4CON	0196	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC5RS	0198							Output (Compare 5	Secondary	Register							FFFF
OC5R	019A							Οι	tput Comp	are 5 Regis	ter							FFFF
OC5CON	019C	_	_	OCSIDL	_	_	—	—	—	_	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: I²C[™] REGISTER MAP

	-																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_		—	_	_	_	—	– – I2C1 Receive Register						0000			
I2C1TRN	0202	_	_	_	_	_	_	_	– – I2C1 Transmit Register						OOFF			
I2C1BRG	0204	_	_	_	_	_	_	_	Baud Rate Generator Register 1						0000			
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ss Register					0000
I2C1MSK	020C	_	_	_	_	_	_	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000
I2C2RCV	0210	_	—	_	_	_	_	_	_				I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	—	_	_	_	_	_	_				I2C2 Transr	nit Register	r			OOFF
I2C2BRG	0214	_	—	_	_	_	_	_				Baud Rate	Generator	Register 2				0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	_		_	_	_	_		•		•	I2C2 Addre	ss Register		•	•	•	0000
I2C2MSK	021C	_		_	_	_	_	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0) R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAP	R IOPUWR	_		_	_	CM	PMSLP
bit 15				1			bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR		SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7	SVIR	SWDTEN,	WDTO	SLEEP	IDLE	BUR	bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimple	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	TRAPR. Trar	Reset Flag bit					
	-	onflict Reset ha					
		onflict Reset ha		d			
bit 14	IOPUWR: Ille	egal Opcode or	Uninitialized	W Access Res	et Flag bit		
					ode or Uninitial	ized W registe	er used as an
		Pointer caused		-		· ·	
	0 = An illega	I opcode or Uni	nitialized W r	egister Reset h	nas not occurred	ł	
bit 13-10	Unimplemen	ted: Read as ')'				
bit 9	CM: Configur	ration Word Mis	match Reset	Flag bit			
		uration Word Mi uration Word Mi					
bit 8		gram Memory P					
		memory bias v			ring Sleep		
					ng Sleep and vol	tage regulator	enters Standby
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Res		red			
		Clear (pin) Res					
bit 6	SWR: Softwa	are Reset (Instru	iction) Flag b	it			
	1 = A reset	instruction has	been execute	ed			
		instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is d						
bit 4		hdog Timer Tim	-	t			
		e-out has occur					
		e-out has not or					
bit 3		e from Sleep Fl	-				
		as been in Slee as not been in S					
Note 1:	All of the Reset sta cause a device Re	•	set or cleare	d in software.	Setting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co	onfiguration bit i	s '1' (unprogi	rammed), the V	NDT is always e	enabled, regard	lless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

SWDTEN bit setting.

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit 0

Legend:				
R = Readal	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7	Unimple	mented: Read as '0'		
bit 6-4	AD1IP<2	:0>: A/D Conversion Comple	ete Interrupt Priority bits	
		errupt is Priority 7 (highest p	· ·	
	•	. , , , , , , , , , , , , , , , , , , ,	· · ·	
	•			
	•			
		errupt is Priority 1 errupt source is disabled		
bit 3		mented: Read as '0'		
bit 2-0	U1TXIP<	2:0>: UART1 Transmitter Int	errupt Priority bits	
	111 = Int	errupt is Priority 7 (highest p	riority interrupt)	
	•		-	
	•			
	•			
		errupt is Priority 1 errupt source is disabled		

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
 bit 7	OC3IP2	OC3IP1	OC3IP0	_	_	_	bit (
							Ditt
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T4IP<2:0>: ⊺i	imer4 Interrupt	Priority bits				
	111 = Interrup	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	• 001 = Interrup	pt is Priority 1					
		pt is Priority 1 pt source is dis	abled				
bit 11	000 = Interru						
bit 11 bit 10-8	000 = Interrup Unimplemen	pt source is dis ted: Read as '	0'	Interrupt Priorit	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as '	^{0'} are Channel 4	• •	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4	• •	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4	• •	/ bits		
	000 = Interru Unimplemen OC4IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4	• •	y bits		
	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4 highest priority	• •	/ bits		
	000 = Interrup Unimplemen OC4IP<2:0>: 111 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1	₀ ' are Channel 4 highest priority abled	• •	/ bits		
bit 10-8	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	^{0'} are Channel 4 highest priority abled 0'	• •			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa	^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>:	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4 highest priority abled ^{0'} are Channel 3	y interrupt) Interrupt Priority			
bit 10-8 bit 7	000 = Interrup Unimplement OC4IP<2:0>: 111 = Interrup 001 = Interrup 000 = Interrup Unimplement OC3IP<2:0>: 111 = Interrup 001 = Interrup	pt source is dis ted: Read as ' Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' Output Compa pt is Priority 7 (^{0'} are Channel 4 highest priority abled 0' are Channel 3 highest priority	y interrupt) Interrupt Priority			

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

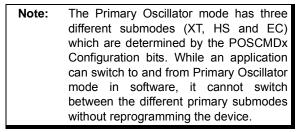
REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—			—	—	—	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	OC5IP2	OC5IP1	OC5IP0	—	—	—	—
bit 7				·			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	OC5IP<2:0>:	Output Compa	are Channel 5 I	Interrupt Priority	y bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				

bit 3-0 Unimplemented: Read as '0'

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	PMPIP2	PMPIP1	PMPIP0	—	—	—	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '0)'				
bit 6-4	PMPIP<2:0>	: Parallel Maste	r Port Interrupt	t Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as ')'				


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_			_	_	_
oit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
oit 7			•		•	•	bit C
_egend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
oit 15-6	Unimplemen	ted: Read as '	0'				
oit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	ximum frequer	ncy deviation				
	011110 =						
	•						
	•						
	000001 =						
	000000 = Ce	nter frequency,	oscillator is ru	inning at factory	/ calibrated free	quency	
	111111 =						
	•						
	•						
	•						
	• 100001 =						

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

8.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in Flash Configuration Word 2 must be programmed to '0'. (Refer to **Section 24.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

8.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or SOSC (if SOSCEN remains set).
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 8-1.

EXAMPLE 8-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

.globalreset
.include "p24fxxxx.inc"
.text
reset:
;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
DISI #18
PUSH w1
PUSH w2
PUSH w3
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0
POP w3
POP w2
POP w1
.end

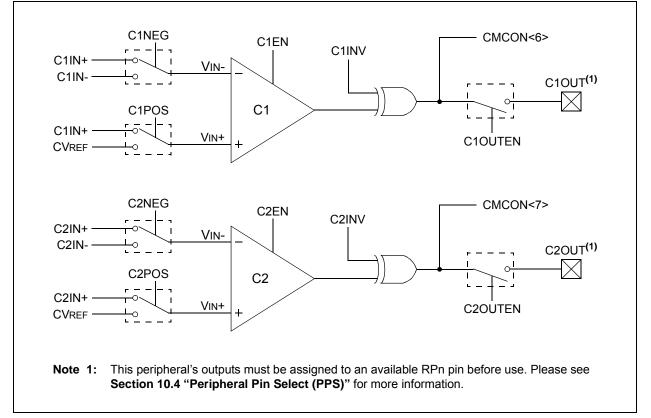
NOTES:

REGISTER 18-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

 bit 7	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL bit 0
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
bit 15							bit 8
_	—	—	—	—	—	—	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

bit 15-2 Unimplemented: Read as '0'

- bit 1RTSECSEL: RTCC Seconds Clock Output Select bit(1)1 = RTCC seconds clock is selected for the RTCC pin0 = RTCC alarm pulse is selected for the RTCC pinbit 0PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffers


Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

NOTES:

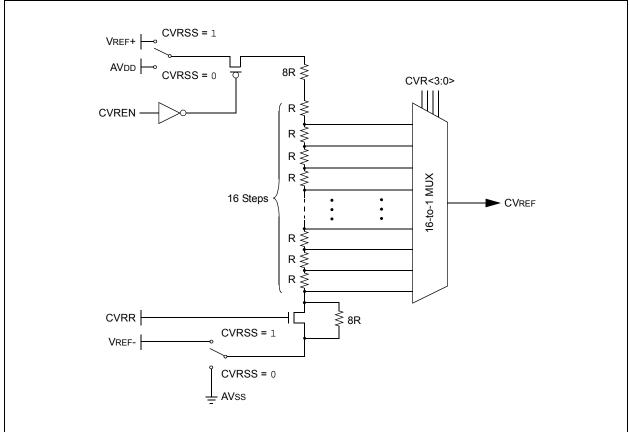
22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Output Compare"** (DS39706).

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

23.0 COMPARATOR VOLTAGE REFERENCE

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to
	the "PIC24F Family Reference Manual",
	"Comparator Voltage Reference
	Module" (DS39709).


23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of

output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
IESO	WUTSEL1(1)	WUTSEL0 ⁽¹⁾	SOSCSEL1(1)	SOSCSEL0 ⁽¹⁾	FNOSC2	FNOSC1	FNOSC0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	r	R/PO-1	R/PO-1	R/PO-1
FCKSM1	FCKSM0	OSCIOFCN	IOL1WAY	r	I2C1SEL	POSCMD1	POSCMD0
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read	as '0'
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared

bit 23-16	Unimplemented: Read as '1'
bit 15	IESO: Internal External Switchover bit
	 1 = IESO mode (Two-Speed Start-up) is enabled 0 = IESO mode (Two-Speed Start-up) is disabled
bit 14-13	WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits ⁽¹⁾
	 11 = Default regulator start-up time is used 01 = Fast regulator start-up time is used x0 = Reserved; do not use
bit 12-11	SOSCSEL<1:0>: Secondary Oscillator Power Mode Select bits ⁽¹⁾
	 11 = Default (High Drive Strength) mode 01 = Low-Power (Low Drive Strength) mode x0 = Reserved; do not use
bit 10-8	FNOSC<2:0>: Initial Oscillator Select bits
	 111 = Fast RC Oscillator with Postscaler (FRCDIV) 110 = Reserved 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits 1x = Clock switching and Fail-Safe Clock Monitor are disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	OSCIOFCN: OSCO Pin Configuration bit
	If POSCMD<1:0> = 11 or 00:1 = OSCO/CLKO/RA3 functions as CLKO (Fosc/2)0 = OSCO/CLKO/RA3 functions as port I/O (RA3)If POSCMD<1:0> = 10 or 01:OSCIOFCN has no effect on OSCO/CLKO/RA3.
Note di	These bits are implemented only in devises with a major ellipse revision level of D or later (DD)/DD)

Note 1: These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). Refer to **Section 28.0** "**Packaging Information**" in the device data sheet for the location and interpretation of product date codes.

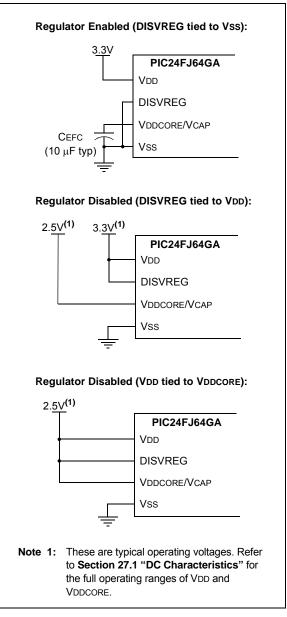
24.2 On-Chip Voltage Regulator

All of the PIC24FJ64GA004 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ64GA004 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the DISVREG pin. Tying Vss to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 27.1 "DC Characteristics"**.

If DISVREG is tied to VDD, the regulator is disabled. In this case, separate power for the core logic at a nominal 2.5V must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 24-1 for possible configurations.

24.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION


When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown out" conditions, when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD, with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect (LVD) circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown.

Low-Voltage Detection is only available when the regulator is enabled.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

24.2.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ64GA004 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the tracking level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 27.1 "DC Characteristics"**.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit4,Wnd	Wnd = Logical Right Shift Wb by lit4	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
-	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Wis, Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
MOL	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU		{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		Wb,#lit5,Wnd	W3:W2 = f * WREG	1	1	None
	MUL	f	$f = \overline{f} + 1$			
NEG	NEG	f	_	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

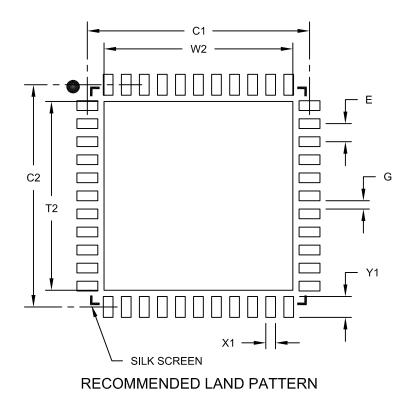
28-Lead SPDIP (.300")

Example

28-Lead SSOP (5.30 mm)

Example

28-Lead SOIC (7.50 mm)


Example

Legend:	XXX	Customer-specific information				
	Y	Year code (last digit of calendar year)				
	ΥY	Year code (last 2 digits of calendar year)				
	WW	Week code (week of January 1 is week '01')				
	NNN	Alphanumeric traceability code				
		Pb-free JEDEC designator for Matte Tin (Sn)				
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)				
		can be found on the outer packaging for this package.				
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will				
		d over to the next line, thus limiting the number of available s for customer-specific information.				

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimensior	Dimension Limits			
Contact Pitch	Contact Pitch E			
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

	PADCFG1 (Pad Configuration Control)	173, 180
	PMADDR (Parallel Port Address)	
	PMAEN (Parallel Port Enable)	171
	PMCON (Parallel Port Control)	168
	PMMODE (Parallel Port Mode)	
	PMSTAT (Parallel Port Status)	172
	RCFGCAL (RTCC Calibration	
	and Configuration)	179
	RCON (Reset Control)	
	RPINR0 (Peripheral Pin Select Input 0)	111
	RPINR1 (Peripheral Pin Select Input 1)	
	RPINR11 (Peripheral Pin Select Input 11)	114
	RPINR18 (Peripheral Pin Select Input 18)	
	RPINR19 (Peripheral Pin Select Input 19)	115
	RPINR20 (Peripheral Pin Select Input 20)	116
	RPINR21 (Peripheral Pin Select Input 21)	
	RPINR22 (Peripheral Pin Select Input 22)	117
	RPINR23 (Peripheral Pin Select Input 23)	
	RPINR3 (Peripheral Pin Select Input 3)	112
	RPINR4 (Peripheral Pin Select Input 4)	
	RPINR7 (Peripheral Pin Select Input 7)	113
	RPINR8 (Peripheral Pin Select Input 8)	113
	RPINR9 (Peripheral Pin Select Input 9)	
	RPOR0 (Peripheral Pin Select Output 0)	118
	RPOR1 (Peripheral Pin Select Output 1)	110
	RPOR10 (Peripheral Pin Select Output 10)	123
	RPOR11 (Peripheral Pin Select Output 11)	123
	RPOR12 (Peripheral Pin Select Output 12)	
	,	
	RPOR2 (Peripheral Pin Select Output 2)	119
	RPOR3 (Peripheral Pin Select Output 3)	119
	RPOR4 (Peripheral Pin Select Output 4)	
	RPOR5 (Peripheral Pin Select Output 5)	120
	RPOR6 (Peripheral Pin Select Output 6)	
	RPOR7 (Peripheral Pin Select Output 7)	
	RPOR8 (Peripheral Pin Select Output 8)	122
	RPOR9 (Peripheral Pin Select Output 9)	
	SPIxCON1 (SPIx Control 1)	146
	SPIxCON2 (SPIx Control 2)	147
	SPIxSTAT (SPIx Status and Control)	
	SR (ALU STATUS)	26, 63
	T1CON (Timer1 Control)	
	TxCON (Timer2 and Timer4 Control)	130
	TyCON (Timer3 and Timer5 Control)	131
	UxMODE (UARTx Mode)	
	UxRXREG (UARTx Receive)	166
	UxSTA (UARTx Status and Control)	164
	UxTXREG (UARTx Transmit)	
	WKDYHR (RTCC Weekday and Hours Value).	183
	YEAR (RTCC Year Value)	
Rese	ets	
	Brown-out Reset (BOR)	53
	Clock Source Selection	
	Configuration Mismatch Reset (CM)	53
	Delay Times	56
	Device Reset Times	
	Illegal Opcode Reset (IOPUWR)	53
	Master Clear Pin Reset (MCLR)	
	Power-on Reset (POR)	53
	RCON Flags Operation	
	SFR States	
	Software RESET Instruction (SWR)	
	Trap Conflict Reset (TRAPR)	
	Uninitialized W Register Reset (UWR)	
	Watchdog Timer Reset (WDT)	53

Revision History	267
Alarm Configuration	186
Alarm Mask Settings	187
Calibration	186
Register Mapping	178
Write Lock	178

S

Serial Peripheral Interface. See SPI.	
SFR Space	32
Sleep Mode	103
Software Simulator (MPLAB SIM)	221
Software Stack	
Special Features	8
SPI	
Enhanced Buffer Master Mode Setup	143
Enhanced Buffer Slave Mode Setup	143
Standard Master Mode Setup	141
Standard Slave Mode Setup	141
т	
Timer1	125
Timer2/3 and Timer4/5	127
Timing Diagrams	
CLKO and I/O	
External Clock	

U

UART
Baud Rate Generator (BRG) 160
Break and Sync Transmit Sequence 161
IrDA Support161
Operation of UxCTS and UxRTS Control Pins 161
Receiving in 8-Bit or 9-Bit Data Mode 161
Transmitting in 8-Bit Data Mode 161
Transmitting in 9-Bit Data Mode 161
Universal Asynchronous Receiver Transmitter. See UART.
Unused I/Os

۷

VDDCORE/VCAP Pin	
Voltage Regulator (On-Chip)	215
and BOR	215
and POR	216
Low-Voltage Detection (LVD)	215
Standby Mode	216
Tracking Mode	215
Voltage Regulator Pins	19

W

Watchdog Timer (WDT)	
Windowed Operation	
WWW Address	
WWW, On-Line Support	6