

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj48ga004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24FJ64GA004 FAMILY

Pin Diagrams

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

			•••••		LOIOI													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output 0	Compare 1	Secondary	Register							FFFF
OC1R	0182		Output Compare 1 Register								FFFF							
OC1CON	0184	_	—	OCSIDL	_	_	—	—	_	_	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC2RS	0186							Output 0	Compare 2	Secondary	Register							FFFF
OC2R	0188							Οι	tput Comp	are 2 Regis	ter							FFFF
OC2CON	018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC3RS	018C							Output 0	Compare 3	Secondary	Register							FFFF
OC3R	018E							Οι	tput Comp	are 3 Regis	ter							FFFF
OC3CON	0190	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC4RS	0192							Output 0	Compare 4	Secondary	Register							FFFF
OC4R	0194							Οι	tput Comp	are 4 Regis	ter							FFFF
OC4CON	0196	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC5RS	0198							Output (Compare 5	Secondary	Register							FFFF
OC5R	019A							Οι	tput Comp	are 5 Regis	ter							FFFF
OC5CON	019C	_	_	OCSIDL	_	_	—	—	—	_	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: I²C[™] REGISTER MAP

	-																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_		—	_	_	_	—	– – I2C1 Receive Register							0000		
I2C1TRN	0202	_	_	_	_	_	_	_	– – I2C1 Transmit Register							OOFF		
I2C1BRG	0204	_	_	_	_	_	_	_	Baud Rate Generator Register 1							0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ss Register					0000
I2C1MSK	020C	_	_	_	_	_	_	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000
I2C2RCV	0210	_	—	_	_	_	_	_	_				I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	—	_	_	_	_	_	_				I2C2 Transr	nit Register	r			OOFF
I2C2BRG	0214	_	—	_	_	_	_	_				Baud Rate	Generator	Register 2				0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	_		_	_	_	_		•		•	I2C2 Addre	ss Register		•	•	•	0000
I2C2MSK	021C	_	-	_	_	_	—	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant					
POR	FNOSC<2:0> Configuration bits					
BOR	(CW2<10:8>)					
MCLR	COSC<2:0> Control bits					
WDTO	(OSCCON<14:12>)					
SWR						

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Master Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time that the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT + TRST	_	1, 2, 7
	FRC, FRCDIV	TPOR + TPWRT + TRST	TFRC	1, 2, 3, 7
	LPRC	TPOR + TPWRT + TRST	TLPRC	1, 2, 3, 7
	ECPLL	TPOR + TPWRT + TRST	TLOCK	1, 2, 4, 7
	FRCPLL	TPOR + TPWRT + TRST	TFRC + TLOCK	1, 2, 3, 4, 7
	XT, HS, SOSC	TPOR + TPWRT + TRST	Tost	1, 2, 5, 7
	XTPLL, HSPLL	TPOR + TPWRT + TRST	Tost + Tlock	1, 2, 4, 5, 7
BOR	EC	TPWRT + TRST	—	2, 7
	FRC, FRCDIV	TPWRT + TRST	TFRC	2, 3, 7
	LPRC	TPWRT + TRST	TLPRC	2, 3, 7
	ECPLL	TPWRT + TRST	TLOCK	2, 4, 7
	FRCPLL	TPWRT + TRST	TFRC + TLOCK	2, 3, 4, 7
	XT, HS, SOSC	TPWRT + TRST	Tost	2, 5, 7
	XTPLL, HSPLL	TPWRT + TRST	TFRC + TLOCK	2, 3, 4, 7
All Others	Any Clock	TRST	—	7

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- **2:** TPWRT = 64 ms nominal if regulator is disabled (ENVREG tied to Vss).
- **3:** TFRC and TLPRC = RC Oscillator Start-up Times.
- **4:** TLOCK = PLL Lock Time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.
- 7: TRST = Internal State Reset Timer

PIC24FJ64GA004 FAMILY

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0				
	—	PMPIF	_	_	_	OC5IF					
bit 15				·			bit 8				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
IC5IF	IC4IF	IC3IF	—	—	_	SPI2IF	SPF2IF				
bit 7							bit (
Legend:											
R = Readab	le hit	W = Writable I	hit	U = Unimplen	nented hit re:	ad as 'O'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle	-	x = Bit is unki	nwn				
							101111				
bit 15-14	Unimpleme	ented: Read as '0)'								
bit 13	PMPIF: Para	allel Master Port	Interrupt Flag	g Status bit							
		1 = Interrupt request has occurred 0 = Interrupt request has not occurred									
bit 12-10	Unimpleme	nted: Read as '0)'								
bit 9	OC5IF: Outp	put Compare Cha	annel 5 Interr	upt Flag Status I	bit						
		t request has occ t request has not									
bit 8	Unimpleme	nted: Read as '0)'								
bit 7		Capture Channe t request has occ		Flag Status bit							
		t request has not									
bit 6	IC4IF: Input	Capture Channe	el 4 Interrupt I	Flag Status bit							
		t request has occ t request has not									
bit 5	•	Capture Channe		Flag Status bit							
	1 = Interrupt	t request has occ t request has not	urred								
bit 4-2	-	ented: Read as '0									
bit 1	•	2 Event Interrupt		oit							
	1 = Interrupt	t request has occ t request has not	urred								
bit 0	-	12 Fault Interrupt		oit							
	1 = Interrupt										

8.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or SOSC (if SOSCEN remains set).
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 8-1.

EXAMPLE 8-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

.globalreset
.include "p24fxxxx.inc"
.text
reset:
;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
DISI #18
PUSH w1
PUSH w2
PUSH w3
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0
POP w3
POP w2
POP w1
.end

11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Timers"** (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC), or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

PIC24FJ64GA004 FAMILY

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON		TSIDL	_	_		_							
bit 15							bit 8						
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0						
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS							
bit 7							bit (
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own						
bit 15	TON: Timer1	On bit											
	1 = Starts 16												
	0 = Stops 16	6-bit Timer1											
bit 14	Unimplemer	nted: Read as ')'										
bit 13	TSIDL: Time	r1 Stop in Idle N	lode bit										
		ues module op s module opera			le mode								
bit 12-7		nted: Read as '											
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit												
	<u>When TCS = 1:</u>												
	This bit is ign	ored.											
	When TCS =												
		me accumulatio me accumulatio											
bit 5-4				e Select bits									
	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256												
	10 = 1:64												
	01 = 1:8												
	00 = 1:1												
bit 3	-	nted: Read as 1	Unimplemented: Read as '0'										
bit 2		er1 External Clo		hronization Sel	ect bit								
	When TCS =	1:	ock Input Sync	hronization Sel	ect bit								
	<u>When TCS =</u> 1 = Synchro	<u>1:</u> nizes external o	ock Input Sync		ect bit								
	<u>When TCS =</u> 1 = Synchro 0 = Does no	<u>1:</u> onizes external o ot synchronize e	ock Input Sync		ect bit								
	<u>When TCS =</u> 1 = Synchro	<u>1:</u> onizes external o ot synchronize e <u>0:</u>	ock Input Sync		ect bit								
	When TCS = 1 = Synchro 0 = Does no When TCS = This bit is ign	<u>1:</u> onizes external o ot synchronize e <u>0:</u>	ock Input Sync clock input external clock i		ect bit								
bit 2	When TCS =1 = Synchro0 = Does noWhen TCS =This bit is ignTCS: Timer11 = External	<u>1:</u> onizes external o ot synchronize e <u>0:</u> nored.	ock Input Sync clock input external clock i Gelect bit	nput	ect bit								

To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - Clear the SPIxIF bit in the respective IFSx register.
 - Set the SPIxIE bit in the respective IECx register.
 - Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

17.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UARTx BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

 $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note 1: Based on FCY = FOSC/2; Doze mode

and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

```
Desired Baud Rate = FCY/(16 (UxBRG + 1))
Solving for UxBRG value:

UxBRG = ((FCY/Desired Baud Rate)/16) - 1
UxBRG = ((4000000/9600)/16) - 1
UxBRG = 25
Calculated Baud Rate = 4000000/(16 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate)

Desired Baud Rate = (9615 - 9600)/9600

= 0.16%
```

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾
UARTEN ⁽	¹⁾ —	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15						•	bit 8
R/C-0, H0	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7		NBROD		BROTT	TDOLLT	TDOLLU	bit (
Legend:		C = Clearable	bit		are Clearable bi		
R = Reada	ble bit	W = Writable b	bit	U = Unimplei	mented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown
bit 15		ARTx Enable bit	(1)				
DIL 15		s enabled; all U/		controlled by	LIARTy as defin	ed by LIEN<1.0)>
		s disabled; all U					
bit 14	-	ted: Read as '0	,				
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit				
		nues module op		device enters I	dle mode		
	0 = Continue	es module opera	tion in Idle m	ode			
bit 12	IREN: IrDA [®]	Encoder and De	coder Enable	e bit ⁽²⁾			
		oder and decod					
hit 11		de Selection for					
bit 11		oin in Simplex m		it i			
		oin in Flow Conti					
bit 10	Unimplemen	ted: Read as '0	3				
bit 9-8	UEN<1:0>: L	JARTx Enable b	its ⁽³⁾				
		JxRX and BCLK				controlled by P	ORT latches
		JxRX, UxCTS a					
		JxRX and UxRT nd UxRX pins are					
	latches					cx pins are conti	
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode I	Enable bit		
	1 = UARTx v	vill continue to sa	ample the UxF	RX pin; interrup	t is generated o	n falling edge, b	it is cleared ir
		e on following ris	sing edge				
		-up is enabled					
bit 6		ARTx Loopback		bit			
		Loopback mode k mode is disab					
bit 5	-	o-Baud Enable I					
bit 0		baud rate meas		he next charact	ter – requires re	ception of a Sv	nc field (55h
	cleared i	n hardware upo	n completion				
		e measurement		r completed			
	If UARTEN = 1, t Section 10.4 "Pe					vailable RPn pi	in. See
	This feature is on	-					
	Bit availability de	-			,		

REGISTER 17-1: UXMODE: UARTX MODE REGISTER

3: Bit availability depends on pin availability.

REGISTER 17-2:	UxSTA: UARTx STATUS AND CONTROL REGISTER
----------------	--

REGISTER 1	17-2: UxST	A: UARTx ST	ATUS AND	CONTROL R	EGISTER		
R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15		· · · · · · · · · · · · · · · · · · ·					bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
	-						
URXISEL1 bit 7	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	t	
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operation 00 = Interrupt	d; do not use when a charac buffer becomes when the las ns are complete	ter is transferi s empty t character is ed ter is transferr	rrupt Mode Sele red to the Trans s shifted out o ed to the Transr iffer)	mit Shift Regis	Shift Registe	er; all transmi
bit 14	UTXINV: IrDA <u>If IREN = 0:</u> 1 = UxTX Idle 0 = UxTX Idle <u>If IREN = 1:</u> 1 = UxTX Idle 0 = UxTX Idle	state is '1' state is '1'	ismit Polarity	Inversion bit			
bit 12		ted: Read as '0	,				
bit 11	-	RTx Transmit E					
bit 10	cleared b 0 = Sync Brea UTXEN: UAR	y hardware upo ak transmissior Tx Transmit En	on completion i is disabled o able bit ⁽¹⁾	·		e '0' bits, follow	ved by Stop bit
	0 = Transmit			olled by UART mission is abor		s reset; UxTX p	oin is controlled
bit 9	1 = Transmit	buffer is full		s bit (read-only) more character			
bit 8	1 = Transmit		empty and tra	ead-only) ansmit buffer is transmission is			nas completed
bit 7-6	URXISEL<1:0)>: UARTx Rec	eive Interrupt	Mode Selection	n bits		
	10 = Interrup 0x = Interrup	ot is set on RSR	transfer, mak y character is	ting the receive ting the receive received and tra acters	buffer 3/4 full (i.e., has 3 data	a characters)

Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

R/W-0	U-0	R/C-0	U-0	U-0	U-0	R/W-0	R/W-0				
ADON ⁽¹⁾		ADSIDL				FORM1	FORM0				
bit 15							bit				
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R/W-0, HSC				
SSRC2	SSRC1	SSRC0	—		ASAM	SAMP	DONE				
bit 7							bit (
Legend:		C = Clearable	e bit	HSC = Hardv	vare Settable/C	Clearable bit					
R = Readabl	e bit	W = Writable		U = Unimpler	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
			<i></i>								
bit 15		Operating Mode									
	1 = A/D Con 0 = A/D Con	verter module i	s operating								
bit 14		ted: Read as '	0'								
bit 13	-	Stop in Idle M									
		-		device enters lo	dle mode						
	0 = Continue	es module oper	ation in Idle me	ode							
bit 12-10	Unimplemer	ted: Read as '	0'								
bit 9-8	FORM<1:0>:	Data Output F	ormat bits								
		fractional (sdd									
		nal (dddd_dddo integer (ssss		,							
	-	(0000 00dd d		iddd)							
bit 7-5	SSRC<2:0>:	Conversion Tr	gger Source S	elect bits							
			sampling and	starts conversi	on (auto-conve	ert)					
	110 = Reser										
	10x = Reserved 011 = Reserved										
	011 = Reserved 010 = Timer3 compare ends sampling and starts conversion										
				ampling and sta		1					
bit 4-3		ng the SAMP b ited: Read as '		ng and starts co	nversion						
bit 2	-	Sample Auto-Si									
		•		t conversion co	moletes: SAM	P bit is auto-set					
	0 = Sampling	g begins when	SAMP bit is se	t							
bit 1	SAMP: A/D S	Sample Enable	bit								
		ple-and-Hold (\$ ple-and-Hold a		s sampling inpu ing	ıt						
bit 0		Conversion Stat	-	ing							
		ersion is done									
		ersion is NOT	done								
Note 1. T	he ADC1BUFn	registers do no	t retain their va		ON is cloared	Pood out any o	onvorsion				

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: The ADC1BUFn registers do not retain their values when ADON is cleared. Read out any conversion values from the buffer before disabling the module.

NOTES:

24.2 On-Chip Voltage Regulator

All of the PIC24FJ64GA004 family devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ64GA004 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the DISVREG pin. Tying Vss to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VDDCORE/VCAP pin (Figure 24-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 27.1 "DC Characteristics"**.

If DISVREG is tied to VDD, the regulator is disabled. In this case, separate power for the core logic at a nominal 2.5V must be supplied to the device on the VDDCORE/VCAP pin to run the I/O pins at higher voltage levels, typically 3.3V. Alternatively, the VDDCORE/VCAP and VDD pins can be tied together to operate at a lower nominal voltage. Refer to Figure 24-1 for possible configurations.

24.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

When it is enabled, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. In order to prevent "brown out" conditions, when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD, with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, Low-Voltage Detect (LVD) circuit. When VDD drops below full-speed operating voltage, the circuit sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown.

Low-Voltage Detection is only available when the regulator is enabled.

FIGURE 24-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

24.2.2 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ64GA004 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the tracking level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specified in **Section 27.1 "DC Characteristics"**.

24.2.3 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 10 µs for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the setting of the PMSLP bit (RCON<8>) and the WUTSELx Configuration bits (CW2<14:13>). For more information on TVREG, see **Section 27.0 "Electrical Characteristics"**.

If the regulator is disabled, a separate Power-up Timer (PWRT) is automatically enabled. The PWRT adds a fixed delay of 64 ms nominal delay at device start-up (POR or BOR only). When waking up from Sleep with the regulator disabled, TVREG is used to determine the wake-up time. To decrease the device wake-up time when operating with the regulator disabled, the PMSLP bit can be set.

24.2.4 POWER-UP REQUIREMENTS

The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts.

Note:	For more information, see Section 27.0					
"Electrical Characteristics".						

24.2.5 VOLTAGE REGULATOR STANDBY MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator automatically places itself into Standby mode whenever the device goes into Sleep mode. This feature is controlled by the PMSLP bit (RCON<8>). By default, this bit is cleared, which enables Standby mode.

For select PIC24FJ64GA004 family devices, the time required for regulator wake-up from Standby mode is controlled by the WUTSEL<1:0> Configuration bits (CW2<14:13>). The default wake-up time for all devices is 190 μ s. Where the WUTSELx Configuration bits are implemented, a fast wake-up option is also available. When WUTSEL<1:0> = 01, the regulator wake-up time is 25 μ s.

Note: This feature is implemented only on PIC24FJ64GA004 family devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). When the regulator's Standby mode is turned off (PMSLP = 1), Flash program memory stays powered in Sleep mode and the device can wake-up in less than 10 μ s. When PMSLP is set, the power consumption while in Sleep mode will be approximately 40 μ A higher than power consumption when the regulator is allowed to enter Standby mode.

24.3 Watchdog Timer (WDT)

For PIC24FJ64GA004 family devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (CW1<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

NOTES:

PIC24FJ64GA004 FAMILY

27.1 DC Characteristics

FIGURE 27-2: PIC24FJ64GA004 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED TEMPERATURE)

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3 0.20 REF			
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width		0.23	0.30	0.35
Contact Length		0.50	0.55	0.70
Contact-to-Exposed Pad		0.20	-	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	А	44		
Pitch	е	0.65 BSC		
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	Е	8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2