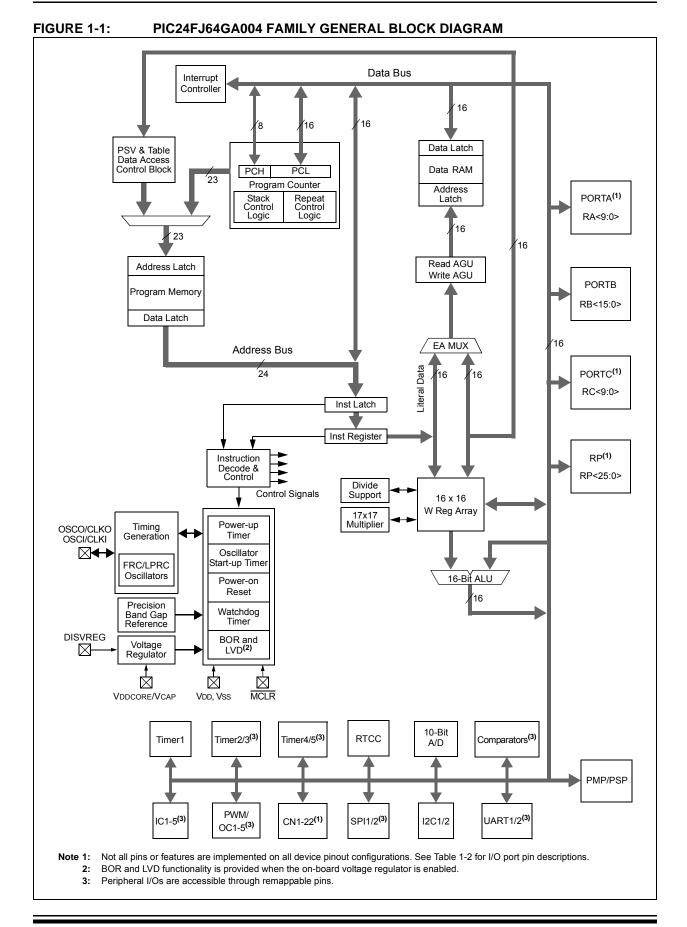


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

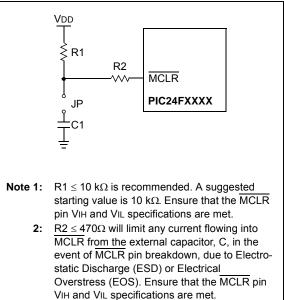
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description				
ASR	Arithmetic shift right source register by one or more bits.				
SL	Shift left source register by one or more bits.				
LSR	Logical shift right source register by one or more bits.				

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

-	row programming operations		
	0x4001, W0	;	
), NVMCON		Initialize NVMCON
; Set up a pointer	to the first program memory lo	C	ation to be written
; program memory se	elected, and writes enabled		
)x0000, W0	;	
MOV WO), TBLPAG	;	Initialize PM Page Boundary SFR
)x6000, W0		An example program memory address
	' instructions to write the lat	tcl	hes
; 0th_program_word			
MOV #I	LOW_WORD_0, W2	;	
	HIGH_BYTE_0, W3	;	
TBLWTL W2	2, [WO]		Write PM low word into program latch
TBLWTH W3	3, [WO++]	;	Write PM high byte into program latch
; 1st_program_word			
	LOW_WORD_1, W2	;	
	HIGH_BYTE_1, W3	;	
	2, [WO]		Write PM low word into program latch
	3, [WO++]	;	Write PM high byte into program latch
; 2nd_program_word			
	LOW_WORD_2, W2	;	
	HIGH_BYTE_2, W3	;	
TBLWTL W2			Write PM low word into program latch
TBLWTH W3	3, [WO++]	;	Write PM high byte into program latch
•			
•			
•			
; 63rd_program_word			
	LOW_WORD_31, W2	;	
	HIGH_BYTE_31, W3	;	
TBLWTL W2			Write PM low word into program latch
TBLWTH W3	3, [WO]	;	Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI		; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; 2 NOPs required after setting WR
NOP		;
BTSC	NVMCON, #15	; Wait for the sequence to be completed
BRA	\$-2	;

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode
 - 0 = Device has not been in Idle mode
- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred (note that BOR is also set after a Power-on Reset)
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

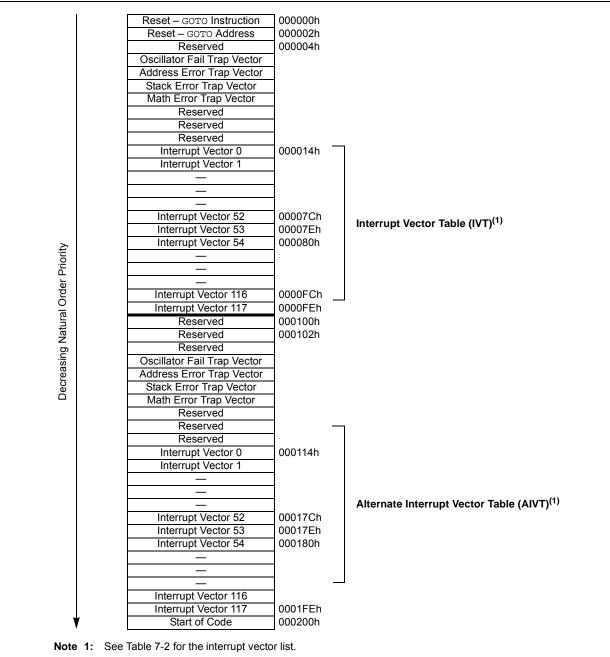
- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources


When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, will automatically be inserted after the POR and PWRT delay times. The FSCM will not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 100 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay will prevent an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the CW2 register (see Table 6-2). The RCFGCAL and NVMCON registers are only affected by a POR.

FIGURE 7-1: PIC24F INTERRUPT VECTOR TABLE

TABLE 7-1: TRAP VECTOR DETAILS

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	0001172h	Reserved

	Vector		ΑΙντ	Interrupt Bit Locations			
Interrupt Source	Number	IVT Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000034h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>	
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC0<0>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	
Low-Voltage Detect (LVD)	72	0000A4h	000124h	IFS4<8>	IEC4<8>	IPC17<2:0>	

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	0-0	0-0	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7				ONL	OWIL	WIZO IIL	bit
Legend:							
R = Readabl		W = Writable		-	nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Enat	ole bit			
		request is enab	-				
		request is not e					
bit 14	U2RXIE: UAF	RT2 Receiver Ir	nterrupt Enable	bit			
	1 = Interrupt	request is enab	led				
		request is not e					
bit 13		rnal Interrupt 2					
		request is enab					
bit 12	-	request is not e Interrupt Enab					
		request is enab					
		request is not e					
bit 11	T4IE: Timer4	Interrupt Enab	le bit				
		request is enab request is not e					
bit 10	OC4IE: Outp	ut Compare Ch	annel 4 Interru	pt Enable bit			
		request is enab					
1.1.0		request is not e					
bit 9	-	ut Compare Ch		pt Enable bit			
		request is enab request is not e					
bit 8-5		ted: Read as '					
bit 4	-	rnal Interrupt 1					
		request is enab					
	0 = Interrupt	request is not e	nabled				
bit 3	CNIE: Input C	Change Notifica	tion Interrupt E	nable bit			
	•	request is enab					
bit 2	•	request is not e					
DIL Z	-	arator Interrupt request is enab					
		request is enab					
bit 1	-	ster I2C1 Even		ble bit			
		request is enab	-				
	0 = Interrupt	request is not e	nabled				
bit 0		ve I2C1 Event	•	e bit			
		request is enab					
	0 = Interrupt I	request is not e	napled				

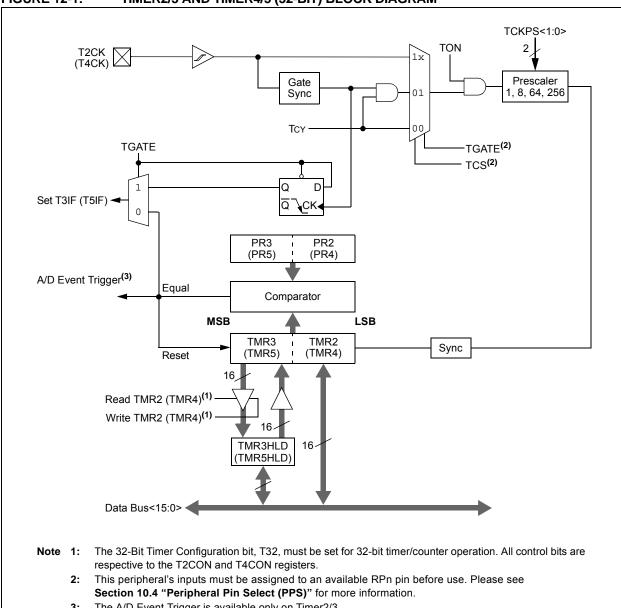
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

	_	_	-							
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	_	_	—	_	MI2C2P2	MI2C2P1	MI2C2P0			
bit 15			·		·		bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	SI2C2P2	SI2C2P1	SI2C2P0		<u> </u>		—			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	111 = Interru • • 001 = Interru 000 = Interru	>: Master I2C2 pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as 'o	highest priority abled	•						
bit 6-4	-	Slave I2C2 E		Priority hits						
DIL 0-4	111 = Interru • • 001 = Interru	pt is Priority 1 pt is Priority 1 pt source is dis	highest priority	•						
bit 3-0	Unimplemen	ted: Read as '	o'							

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1 ⁽¹⁾	RP25R0 ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		—	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	
bit 7			•	•			bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15-13	Unimplemen	ted: Read as '@	י'					

REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12


bit 15-13 Unimplemented: Read as '0

RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits⁽¹⁾ bit 12-8 (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits⁽¹⁾ bit 4-0 (see Table 10-3 for peripheral function numbers)

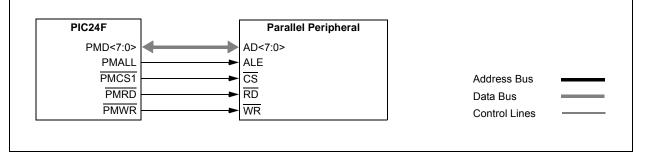
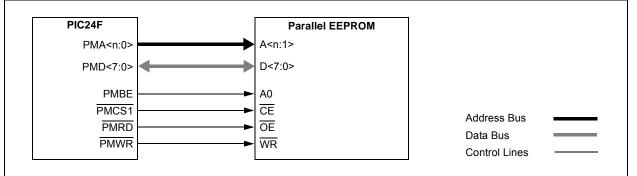
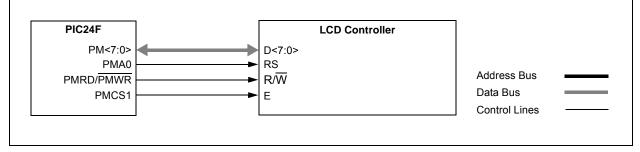

Note 1: These bits are only available on the 44-pin devices; otherwise, they read as '0'.

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

3: The A/D Event Trigger is available only on Timer2/3.


FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION


FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 8-BIT DATA)

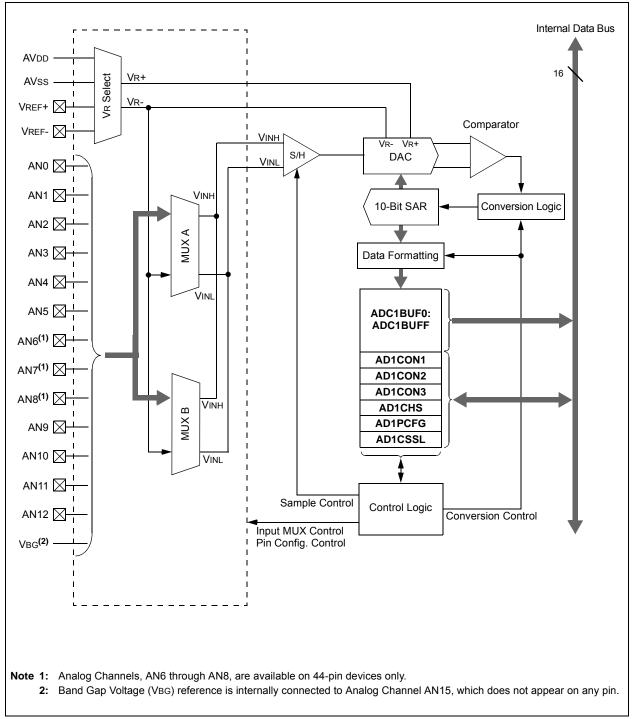

PIC24F		Parallel EEPROM		
PMA <n:0></n:0>		A <n:0></n:0>		
PMD<7:0>	\longleftrightarrow	D<7:0>		
PMCS1	-	CE	Address Bus	
PMRD PMWR			Data Bus	
PINIVR		VVR	Control Lines	

FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 16-BIT DATA)

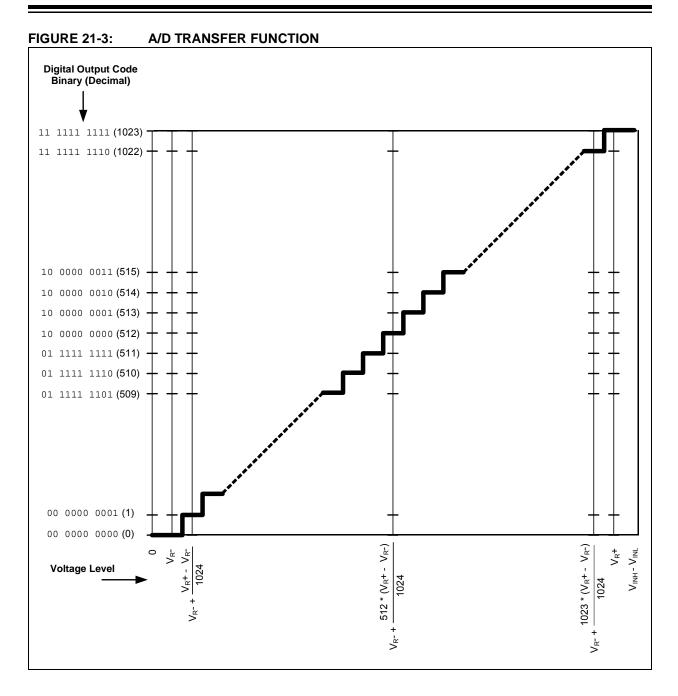


FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)

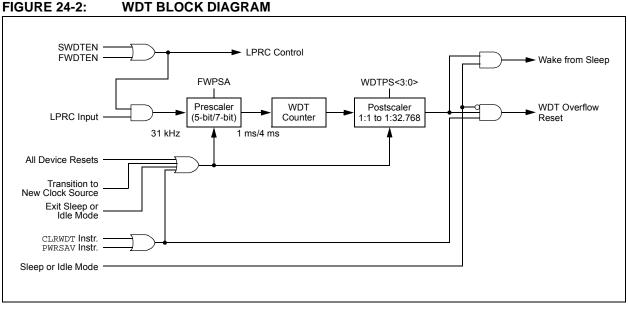
FIGURE 21-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM

R/W-0	U-0	R/C-0	R/C-0	R/W-0	R/W-0	R/W-0	R/W-0			
CMIDL		C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²⁾			
bit 15							bit 8			
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS			
bit 7	01001	02111	Onite	OZINEO	021 00	OINEO	bit (
Legend:		C = Clearable	bit							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15		naratar Stan in	Idla Mada hit							
DIC 15		parator Stop in vice enters Idle		e does not aene	erate interrunt	s; module is still	enabled			
		s normal modu					onabioa			
bit 14	Unimplemen	ted: Read as ')'							
bit 13	C2EVT: Com	parator 2 Event	:							
		tor output char	0							
	-	itor output did r	-	tes						
bit 12	C1EVT: Comparator 1 Event									
	 Comparator output changed states Comparator output did not change states 									
bit 11	-	arator 2 Enable	-							
		tor is enabled tor is disabled								
bit 10	C1EN: Comp	C1EN: Comparator 1 Enable								
		tor is enabled								
	•	itor is disabled		`						
bit 9		Comparator 2 O	-							
		itor output is dr itor output is no								
bit 8		comparator 1 O								
	1 = Compara	ntor output is dr ntor output is no	iven on the ou	tput pad						
bit 7		parator 2 Outp								
	When C2INV									
	1 = C2 VIN + 3									
	$0 = C2 VIN + \frac{1}{2}$									
	$\frac{\text{When C2INV}}{0 = C2 \text{VIN} + 3}$									
	1 = C2 VIN+	-								
Note 1: If	C2OUTEN = 1,	the C2OUT pe	ripheral outpu elect (PPS)" f	t must be config or more information	gured to an av	ailable RPn pin.	See			

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER

- Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 If C10UTEN = 1, the C10UT peripheral output must be configured to an available RPn pin. See
 - If C100TEN = 1, the C100T peripheral output must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

24.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

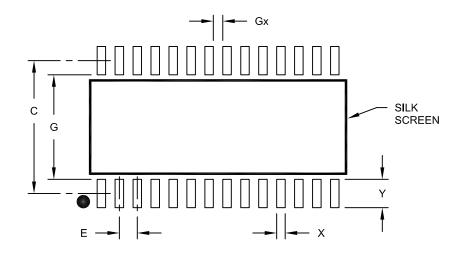
Windowed WDT mode is enabled by programming the WINDIS Configuration bit (CW1<6>) to '0'.

24.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN Configuration bit. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD f		f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit4,Wnd	Wnd = Arithmetic Right Shift Wb by lit4	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT, Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA		Branch if Negative	1	1 (2)	None
		N, Expr	Branch if Not Carry	1		None
	BRA	NC, Expr		1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative Branch if Not Overflow		1 (2) 1 (2)	None
	BRA	NOV, Expr		1		
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None


TABLE 26-2:	INSTRUCTION SET	OVERVIEW

Assembly Mnemonic		Assembly Syntax	ntax Description		# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC				
Contact Pad Spacing	С		9.40			
Contact Pad Width (X28)	X			0.60		
Contact Pad Length (X28)	Y			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A