

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-16 :	A/D REGISTER M	AP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300	A/D Data Buffer 0												xxxx				
ADC1BUF1	0302								A/D Data	a Buffer 1								xxxx
ADC1BUF2	0304								A/D Data	a Buffer 2								xxxx
ADC1BUF3	0306								A/D Data	a Buffer 3								xxxx
ADC1BUF4	0308								A/D Data	a Buffer 4								xxxx
ADC1BUF5	030A								A/D Data	a Buffer 5								xxxx
ADC1BUF6	030C								A/D Data	a Buffer 6								xxxx
ADC1BUF7	030E								A/D Data	a Buffer 7								xxxx
ADC1BUF8	0310								A/D Data	a Buffer 8								xxxx
ADC1BUF9	0312								A/D Data	a Buffer 9								xxxx
ADC1BUFA	0314								A/D Data	Buffer 10								xxxx
ADC1BUFB	0316								A/D Data	Buffer 11								xxxx
ADC1BUFC	0318								A/D Data	Buffer 12								xxxx
ADC1BUFD	031A								A/D Data	Buffer 13								xxxx
ADC1BUFE	031C								A/D Data	Buffer 14								xxxx
ADC1BUFF	031E								A/D Data	Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	_	—	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	_	_	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	—	_	CSCNA	_	—	BUFS	_	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	_	—	—	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	_	_	—	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	PCFG15	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8 ⁽¹⁾	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	_	—	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8 ⁽¹⁾	CSSL7 ⁽¹⁾	CSSL6 ⁽¹⁾	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on 28-pin devices; read as '0'.

7.3 Interrupt Control and Status Registers

The PIC24FJ64GA004 family of devices implements a total of 29 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC12, IPC15, IPC16 and IPC18
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU priority level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-31, in the following pages.

PIC24FJ64GA004 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	—
bit 15	1				1		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable I	pit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
DIT 15		R12 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt r	request has occ	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver In	terrupt Flag S	tatus bit			
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 13	INT2IF: Exter	nal Interrupt 2 I	ag Status bit				
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	tatus bit				
	1 = Interrupt r	request has occ	urred				
hit 11	0 = Interrupt 1	Interrupt Flag S	tatus bit				
DICTI	1 = Interrupt r	request has occ					
	0 = Interrupt r	request has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Cha	annel 4 Interru	ipt Flag Status b	oit		
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 9	OC3IF: Outpu	ut Compare Cha	annel 3 Interru	ipt Flag Status b	oit		
	1 = Interrupt r	request has occ	urred				
hit 0 5	0 = Interrupt r	request has not	occurred				
DIL 0-0 bit 4		red Interrupt 1	laa Status hit				
DIL 4			urred				
	0 = Interrupt r	request has not	occurred				
bit 3	CNIF: Input C	hange Notificat	ion Interrupt F	-lag Status bit			
	1 = Interrupt r	request has occ	urred .	U			
	0 = Interrupt r	request has not	occurred				
bit 2	CMIF: Compa	arator Interrupt	Flag Status bi	t			
	1 = Interrupt r	request has occ	urred				
b : t d		request has not	occurred				
DIC		ster 12C1 Event	Interrupt Flag	Status bit			
	$\perp - interrupt r0 = Interrupt r$	request has occ	occurred				
bit 0	SI2C1IF: Slav	ve I2C1 Event li	nterrupt Flag S	Status bit			
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

PIC24FJ64GA004 FAMILY

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
—	—	PMPIF	—	—	_	OC5IF	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	_		_	SPI2IF	SPF2IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemen	ted: Read as '	כ'				
bit 13	PMPIF: Para	llel Master Port	Interrupt Flag	Status bit			
	1 = Interrupt	request has occ	curred				
		request has not	occurred				
bit 12-10	Unimplemen	ted: Read as '),				
bit 9	OC5IF: Outp	ut Compare Ch	annel 5 Interru	pt Flag Status I	oit		
	1 = Interrupt 0 = Interrupt	request has occ request has not	curred				
bit 8	Unimplemen	ted: Read as ')'				
bit 7	IC5IF: Input (Capture Channe	el 5 Interrupt F	lag Status bit			
	1 = Interrupt	request has occ	curred	lag clatac sit			
	0 = Interrupt	request has not	occurred				
bit 6	IC4IF: Input (Capture Channe	el 4 Interrupt F	lag Status bit			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				
bit 5	IC3IF: Input (Capture Channe	el 3 Interrupt F	lag Status bit			
	1 = Interrupt	request has occ	curred				
h# 4 0		request has not	occurred				
DIT 4-2		ited: Read as					
DIT	SPIZIF: SPIZ	Event Interrup	Flag Status D	IT			
	1 = Interrupt 0 = Interrupt	request has occ	occurred				
bit 0	SPF2IF: SPI	2 Fault Interrupt	Flag Status bi	it			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features of							
	this group of PIC24F devices. It is not							
	intended to be a comprehensive reference							
	source. For more information, refer to the							
	"PIC24F Family Reference Manual",							
	"Oscillator" (DS39700).							

The oscillator system for PIC24FJ64GA004 family devices has the following features:

- A total of four external and internal oscillator options as clock sources, providing 11 different clock modes
- On-chip 4x PLL to boost internal operating frequency on select internal and external oscillator sources

- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: PIC24FJ64GA004 FAMILY CLOCK DIAGRAM

9.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

9.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the PMD bit does. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented:	Read as '0	,

bit 12-8	RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits
	(see Table 10-3 for peripheral function numbers)

- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-3 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-3 for peripheral function numbers)

R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0		
SPIEN ⁽¹)	SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0		
bit 15							bit 8		
R-0	R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF		
bit 7							bit 0		
Legend:		C = Clearable	bit						
R = Reada	able bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown		
bit 15	SPIEN: SPIx 1 = Enables n 0 = Disables i	Enable bit ⁽¹⁾ nodule and con module	figures SCKx,	SDOx, SDIx a	nd \overline{SSx} as seria	al port pins			
bit 14	Unimplemen	ted: Read as '0	,						
bit 13	SPISIDL: SPI	lx Stop in Idle N	lode bit						
	1 = Discontinu 0 = Continues	ues module ope s module operat	eration when d	evice enters Id de	le mode				
bit 12-11	Unimplemen	ted: Read as '0	,						
bit 10-8	SPIBEC<2:0>	SPIx Buffer E	lement Count	bits (valid in E	nhanced Buffer	mode)			
	Master mode: Number of SF	: I transfers pen	ding.						
	<u>Slave mode:</u> Number of SF	PI transfers unre	ead.						
bit 7	SRMPT: SPIX	Shift Register	(SPIxSR) Emp	oty bit (valid in l	Enhanced Buffe	er mode)			
	1 = SPIx Shit 0 = SPIx Shit	ft register is em ft register is not	pty and ready empty	to send or rece	eive				
bit 6	SPIROV: SPI	x Receive Over	flow Flag bit						
	1 = A new by data in th 0 = No overfl	te/word is comp e SPIxBUF regi ow has occurre	letely receivec ster d	and discarded	l; the user softw	are has not rea	id the previous		
bit 5	SRXMPT: SP	Ix Receive FIFO	D Empty bit (va	alid in Enhance	ed Buffer mode))			
	1 = Receive	FIFO is empty FIFO is not emp	oty						
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bi	its (valid in Enh	anced Buffer m	node)			
	111 = Interru 110 = Interru 101 = Interru 100 = Interru	 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when the last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data is shifted into the SPIxSR; as a result, the TX FIFO has one open spot 							
	011 = Interru 010 = Interru 001 = Interru 000 = Interru (SRXM	 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit set) 010 = Interrupt when the SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set) 							
Note 1:	If SPIEN = 1, thes "Peripheral Pin \$	se functions mu Select (PPS) " f	st be assigned or more inform	d to available R nation.	RPn pins before	use. See Sect	ion 10.4		

REGISTER 15-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

16.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS39702).

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I^2C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- · Both 100 kHz and 400 kHz bus specifications
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL

A block diagram of the module is shown in Figure 16-1.

16.1 Peripheral Remapping Options

The I²C modules are tied to fixed pin assignments and cannot be reassigned to alternate pins using Peripheral Pin Select. To allow some flexibility with peripheral multiplexing, the I2C1 module in all devices can be reassigned to the alternate pins, designated as ASCL1 and ASDA1, during device configuration.

Pin assignment is controlled by the I2C1SEL Configuration bit; programming this bit (= 0) multiplexes the module to the ASCL1 and ASDA1 pins.

16.2 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

16.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 16-1.

EQUATION 16-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 16-1: I²C[™] CLOCK RATES⁽¹⁾

16.4 Slave Address Masking

The I2CxMSK register (Register 16-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses, '00000000' and '00100000'.

To enable address masking, the IPMI (Intelligent Peripheral Management Interface) must be disabled by clearing the IPMIEN bit (I2CxCON<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 16-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required	_	I2CxB	RG Value	Actual	
System FscL	FCY	(Decimal)	(Hexadecimal)	Fsc∟	
100 kHz	16 MHz	157	9D	100 kHz	
100 kHz	8 MHz	78	4E	100 kHz	
100 kHz	4 MHz	39	27	99 kHz	
400 kHz	16 MHz	37	25	404 kHz	
400 kHz	8 MHz	18	12	404 kHz	
400 kHz	4 MHz	9	9	385 kHz	
400 kHz	2 MHz	4	4	385 kHz	
1 MHz	16 MHz	13	D	1.026 MHz	
1 MHz	8 MHz	6	6	1.026 MHz	
1 MHz	4 MHz	3	3	0.909 MHz	

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-2: $I^2 C^{TM} RESERVED ADDRESSES^{(1)}$

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	Cbus Address
0000 010	x	Reserved
0000 011	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 1xx	x	Reserved
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

2: The address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 5	D/A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from slave
	0 = Write – Indicates data transfer is input to slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	U = Receive is not complete, I2CXRCV is empty Hardware is set when I2CXRCV is written with received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes I2CxTRN. Hardware is clear at completion of data transmission.

Note 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data, either as a slave or a master. Reading ACKSTAT after receiving address or data bytes returns an invalid result.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

AMSK<9:0>: Mask for Address Bit x Select bits

- 1 = Enables masking for bit x of incoming message address; bit match is not required in this position
- 0 = Disables masking for bit x; bit match is required in this position

bit 9-0

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"UART"* (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit
 Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

Note: In this section, the UART modules are referred to together as UARTx or separately as UART1 and UART2.

FIGURE 17-1: UARTx SIMPLIFIED BLOCK DIAGRAM Baud Rate Generator IrDA® IrDA® Karta Baud Rate Generator IrDA® IrDA®

© 2010-2013 Microchip Technology Inc.

REGISTER 17-2:	UxSTA: UARTx STATUS AND CONTROL REGISTER
----------------	--

REGIOTER					LOIOTEIX		
R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15		· · ·				•	bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	t	
R = Readable	e bit	W = Writable b	it	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15,13	UTXISEL<1:0 11 = Reserve 10 = Interrupt transmit 01 = Interrupt operatio 00 = Interrupt	D>: UARTx Tran rd; do not use when a charact buffer becomes when the last ns are complete when a charact	smission Inte ter is transfer empty character is d er is transferr	rrupt Mode Selo red to the Trans s shifted out o ed to the Transr	ection bits smit Shift Regis f the Transmit nit Shift Registe	ter (TSR) and a Shift Register (this implies t	as a result, the r; all transmit here is at least
	one cha	racter open in th	ie transmit bu	iffer)			
bit 14	UTXINV: IrDA	[®] Encoder Tran	smit Polarity	Inversion bit			
	If IREN = 0: 1 = UxTX Idle 0 = UxTX Idle If IREN = 1: 1 = UxTX Idle 0 = UxTX Idle	e state is '0' e state is '1' e state is '1'					
hit 12		ted: Read as '0	,				
bit 11		RTx Transmit B	reak hit				
Sit T	1 = Sends Sy cleared b 0 = Sync Bre	vnc Break on ne: by hardware upo ak transmission	xt transmission n completion is disabled o	on – Start bit, fol r completed	lowed by twelve	e '0' bits, follow	ed by Stop bit;
bit 10	UTXEN: UAR	Tx Transmit Ena	able bit ⁽¹⁾				
	1 = Transmit 0 = Transmit by the PC	is enabled, UxT is disabled, any)RT register	X pin is contr pending trans	olled by UART mission is abor	د ted and buffer is	s reset; UxTX p	in is controlled
bit 9	UTXBF: UAR	Tx Transmit Buf	fer Full Status	s bit (read-only)			
	1 = Transmit 0 = Transmit	buffer is full buffer is not full	, at least one	more character	can be written		
bit 8	TRMT: Transr	nit Shift Registe	r Empty bit (r	ead-only)			
	1 = Transmit 0 = Transmit	Shift Register is Shift Register is	empty and tra not empty, a	ansmit buffer is transmission is	empty (the last in progress or	transmission h queued	as completed)
bit 7-6	URXISEL<1:0	0>: UARTx Reco	eive Interrupt	Mode Selection	n bits		
	11 = Interrup 10 = Interrup 0x = Interrup receive	ot is set on RSR ot is set on RSR ot is set when an buffer has one	transfer, mak transfer, mak y character is or more chara	king the receive king the receive received and tra acters	buffer full (i.e., buffer 3/4 full (ansferred from	has 4 data cha i.e., has 3 data the RSR to the	aracters) characters) receive buffer;

Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

PIC24FJ64GA004 FAMILY

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV			IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	IBF: Input But	ffer Full Status	bit				
	1 = All writab	le Input Buffer	registers are fu	III registere ere e	matu		
bit 11			Status bit	registers are e	mpty		
DIL 14	1 = A write at	tempt to a full l	Sidius Dii Input Byte regi	ster occurred (r	must be cleared	d in software)	
	0 = No overfloor	ow occurred	input Dyte regi		nust be cleared		
bit 13-12	Unimplement	ted: Read as 'd)'				
bit 11-8	IB3F:IB0F: In	put Buffer x Sta	atus Full bits				
	1 = Input Buf	fer x contains d	lata that has no	ot been read (re	eading buffer w	ill clear this bit)
	0 = Input Buf	fer x does not o	contain any uni	read data			
bit 7	OBE: Output	Buffer Empty S	tatus bit				
	1 = All readal	ble Output Buff	er registers are	e empty			
h:1 0	0 = Some or	all of the reada		ter registers ar	e full		
DIT 6		it Buffer Underf	low Status bit	Puto register (must be cleare	d in coffworo)	
	1 = Aread of 0 = No under	flow occurred		byte register (must be cleare	u in soltware)	
bit 5-4	Unimplement	ted: Read as 'd)'				
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empty	bits			
	1 = Output B	uffer x is empty	(writing data t	o the buffer will	l clear this bit)		
	0 = Output B	uffer x contains	data that has	not been transi	mitted		

REGISTER 18-5: PMSTAT: PARALLEL PORT STATUS REGISTER

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	—	—	—	_	_		
bit 15							bit 8		
r									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legena:	. 				anted bit read				
R = Readable			DIT		iented bit, read				
-n = Value at	POR	1° = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkn	own		
bit 15 0	Unimplomon	tad. Dood on '	,						
DIL 10-0		ieu. Redu as	, Deference Fr	aabla bit					
DIL 7		iparator voltage		hable bit					
	0 = CVREF CI	rcuit is powered	d down						
bit 6	CVROE: Com	parator VREF C	Dutput Enable	bit					
	1 = CVREF VC	oltage level is o	utput on the C	VREF pin					
	0 = CVREF VC	oltage level is d	isconnected fro	om the CVREF p	pin				
bit 5	CVRR: Comp	arator VREF Ra	inge Selection	bit					
	1 = CVRSRC I	range should be	e 0 to 0.625 C	VRSRC with CVF	RSRC/24 step-s	ize			
		range should be	e 0.25 to 0.719		JVRSRC/32 ste	p-size			
bit 4	CVRSS: Com	parator VREF S	ource Selectio	n bit					
	1 = Compara 0 = Compara	tor reference s	DUICE, CVRSRC	c = AVREF + - VRE	=F- S				
bit 3-0	CVR<3:0>: C	omparator VRE	F Value Select	ion $0 \leq CVR < 3$:	⊂ 0> < 15 bits				
	When CVRR	= <u>1</u> :							
	CVREF = (CVF	R<3:0>/24) • (C	Vrsrc)						
	When CVRR = 0:								
	$CVREF = 1/4 \cdot (CVRSRC) + (CVR<3:0>/32) \cdot (CVRSRC)$								

REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 **IOL1WAY:** IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK (OSCCON<6>) bit can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK (OSCCON<6>) bit can be set and cleared as needed, provided the unlock sequence has been completed

bit 3 Reserved

- bit 2 I2C1SEL: I2C1 Pin Select bit
 - 1 = Use default SCL1/SDA1 pins
 - 0 = Use alternate SCL1/SDA1 pins

bit 1-0 **POSCMD<1:0:>** Primary Oscillator Configuration bits

- 11 = Primary oscillator is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = EC Oscillator mode is selected
- **Note 1:** These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). Refer to **Section 28.0 "Packaging Information"** in the device data sheet for the location and interpretation of product date codes.

REGISTER 24-3: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	_	—	—	—
bit 23							bit 16

U	U	R	R	R	R	R	R
—		FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8

R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Read-only	v hit	U = Unim	plemented bit
Logona.	It Itouu on	y bit	0 011111	

bit 23-14 Unimplemented: Read as '1'

bit 13-6 FAMID<7:0>: Device Family Identifier bits

00010001 = PIC24FJ64GA004 family

- bit 5-0 DEV<5:0>: Individual Device Identifier bits
 - 000100 = PIC24FJ16GA002
 - 000101 = PIC24FJ32GA002
 - 000110 = PIC24FJ48GA002
 - 000111 = PIC24FJ64GA002
 - 001100 = PIC24FJ16GA004
 - 001101 = PIC24FJ32GA004
 - 001110 = PIC24FJ48GA004 001111 = PIC24FJ64GA004

TABLE 27-19: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	ⁿ Sym Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DO31	TIOR	Port Output Rise Time	_	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	Tinp	INTx Pin High or Low Time (output)	20	_	—	ns		
DI40 TRBP CNx High or Low Time (input)		2	—	—	Тсү			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

PIC24FJ64GA004 FAMILY

28-Lead QFN (6X6 mm)

44-Lead QFN (8x8x0.9 mm)

44-Lead TQFP (10x10x1 mm)

Example

Example

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

NOTES: