E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	Pin Number									
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description					
OSCI	9	6	30	Ι	ANA	Main Oscillator Input Connection.					
OSCO	10	7	31	0	ANA	Main Oscillator Output Connection.					
PGEC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator and ICSP™ Programming					
PGEC2	22	19	9	I/O	ST	Clock.					
PGEC3	14	12	42	I/O	ST						
PGED1	4	1	21	I/O	ST	In-Circuit Debugger/Emulator and ICSP Programming					
PGED2	21	18	8	I/O	ST	Data.					
PGED3	15	11	41	I/O	ST						
PMA0	10	7	3	I/O	ST/TTL	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).					
PMA1	12	9	2	I/O	ST/TTL	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).					
PMA2	—	_	27	0	—	Parallel Master Port Address (Demultiplexed Master					
PMA3	—	_	38	0	—	modes).					
PMA4	—	_	37	0	—						
PMA5	—	_	4	0	—						
PMA6	—	_	5	0	—						
PMA7	—	_	13	0	—						
PMA8	—	—	32	0	—						
PMA9	—	_	35	0	—						
PMA10	—	_	12	0	—						
PMA11	—	—	_	0	—						
PMA12	—	_	_	0	—						
PMA13	—	_	_	0	—						
PMBE	11	8	36	0	—	Parallel Master Port Byte Enable Strobe.					
PMCS1	26	23	15	0	—	Parallel Master Port Chip Select 1 Strobe/Address Bit 14.					
PMD0	23	20	10	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) o					
PMD1	22	19	9	I/O	ST/TTL	Address/Data (Multiplexed Master modes).					
PMD2	21	18	8	I/O	ST/TTL						
PMD3	18	15	1	I/O	ST/TTL						
PMD4	17	14	44	I/O	ST/TTL						
PMD5	16	13	43	I/O	ST/TTL						
PMD6	15	12	42	I/O	ST/TTL						
PMD7	14	11	41	I/O	ST/TTL						
PMRD	24	21	11	0	_	Parallel Master Port Read Strobe.					
PMWR	25	22	14	0	_	Parallel Master Port Write Strobe.					
Legend:	TTL = TTL inp ANA = Analog	level input/o	utput		l ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer					

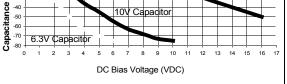
TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.


Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

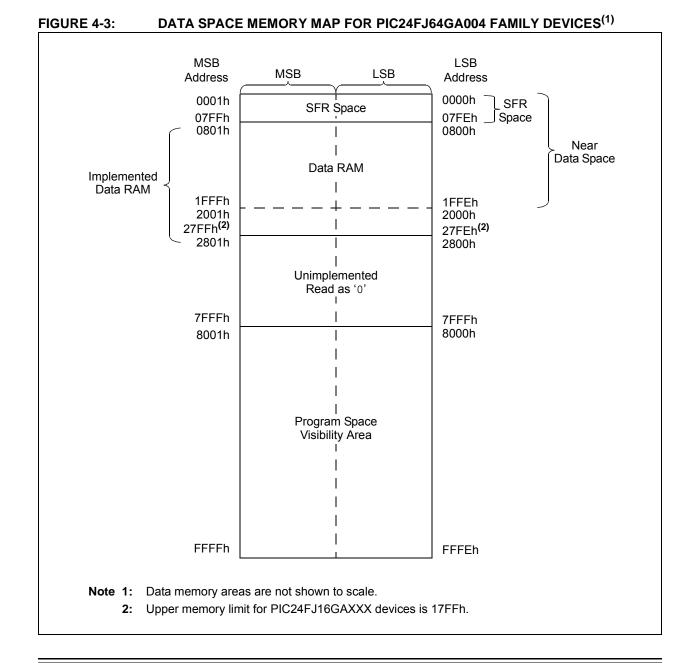
2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to


4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility"). PIC24FJ64GA004 family devices implement a total of 8 Kbytes of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

TABLE 4-6:	TIMER REGISTER MAP

	0
	201
	10-20
	ω
	Mici
	Microchip Technolog
	ъ Н
	ech
	no
:	<
	n
	•

0

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Timer1 Peri	iod Registe	r							FFFF
T1CON	0104	TON	_	- TSIDL TGATE TCKPS1 TCKPS0 - TSYNC TCS - 000									0000					
TMR2	0106		Timer2 Register 000							0000								
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only) 0000							0000								
TMR3	010A		Timer3 Register 0000							0000								
PR2	010C		Timer2 Period Register FFF							FFFF								
PR3	010E								Timer3 Peri	iod Registe	r							FFFF
T2CON	0110	TON		TSIDL	_		_		—		TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T3CON	0112	TON		TSIDL	_		_		—		TGATE	TCKPS1	TCKPS0		—	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holdin	g Register (for 32-bit o	perations o	nly)						0000
TMR5	0118								Timer5	Register								0000
PR4	011A		Timer4 Period Register FFF						FFFF									
PR5	011C		Timer5 Period Register FFFF						FFFF									
T4CON	011E	TON		TSIDL	_		—		—		TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T5CON	0120	TON	-	TSIDL	_	-	_	_	—	-	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140		Input Capture 1 Register FF											FFFF				
IC1CON	0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2BUF	0144							l	nput Captur	e 2 Registe	er							FFFF
IC2CON	0146	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3BUF	0148							l	nput Captur	e 3 Registe	er							FFFF
IC3CON	014A	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4BUF	014C							l	nput Captur	e 4 Registe	er							FFFF
IC4CON	014E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5BUF	0150							l	nput Captur	e 5 Registe	er							FFFF
IC5CON	0152	_	_	ICSIDL	_	_	—	—	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
Logondu																		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: UART REGISTER MAP

	-	-																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN		USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	—	—	—	_	_	UTX8	UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	0000
U1RXREG	0226	_	_	_	_	_	_	_	URX8	URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0	0000
U1BRG	0228							Baud R	ate Genera	tor Prescale	r Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_	UTX8	UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	0000
U2RXREG	0236	_	_	—	—	—	_	_	URX8	URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0	0000
U2BRG	0238	Baud Rate Generator Prescaler 000										0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	-	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	-	_	_	_	_	_	_	_	-	-	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							SP	11 Transmit/	Receive Bu	ffer							0000
SPI2STAT	0260	SPIEN	_	SPISIDL	-	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	-	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	-	_	_	_	_	_	_	_	-	-	_	SPIFE	SPIBEN	0000
SPI2BUF	0268	SPI2 Transmit/Receive Buffer										0000						

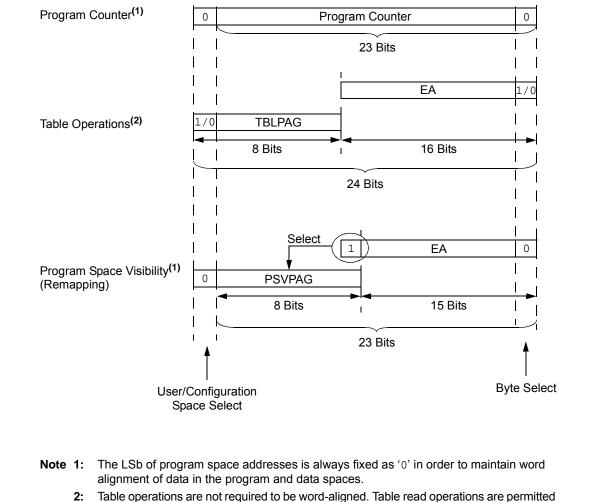

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access		Program Space Address										
Access Type	Space	<23>	<22:16>	<15>	<14:1> <0>								
Instruction Access	User	0		PC<22:1>		0							
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0											
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>									
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX									
	Configuration	TB	LPAG<7:0>	Data EA<15:0>									
		1:	xxx xxxx	XXXX XXXX XXXX XXXX									
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾									
(Block Remap/Read)		0	XXXX XX	x xxx xxxx xxxx xxxx									

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK

; Set up	NVMCON	I for block erase operation			
1	MOV	#0x4042, W0	;		
1	MOV	W0, NVMCON	;	Initialize NVMCON	
; Init p	pointer	to row to be ERASED			
1	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;		
1	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR	
1	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer	
	TBLWTL	WO, [WO]	;	Set base address of erase block	
1	DISI	#5	;	Block all interrupts with priority <7	
			;	for next 5 instructions	
1	MOV	#0x55, W0			
1	MOV	W0, NVMKEY	;	Write the 55 key	
1	MOV	#0xAA, W1	;		
1	MOV	W1, NVMKEY	;	Write the AA key	
1	BSET	NVMCON, #WR	;	Start the erase sequence	
1	NOP		;	Insert two NOPs after the erase	
]	NOP		;	command is asserted	

5.5.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-4).

EXAMPLE 5-4: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

; Setup a p	pointer to data Program Memory		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;1	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;1	initialize a register with program memory address
MOV	#LOW_WORD_N, W2	;	
MOV	#HIGH_BYTE_N, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; Setup NVN MOV MOV	4CON for programming one word #0x4003, W0 W0, NVMCON	;	data Program Memory Set NVMOP bits to 0011
DISI	#5	;	Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	;	Write the key sequence
MOV	W0, NVMKEY		
MOV	#0xAA, W0		
MOV	W0, NVMKEY		
BSET	NVMCON, #WR	;	Start the write cycle
NOP		;	2 NOPs required after setting WR
NOP		;	

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode
 - 0 = Device has not been in Idle mode
- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred (note that BOR is also set after a Power-on Reset)
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—				—	_	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

- 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - **2:** The IPLx bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—		—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

IPL3: CPU Interrupt Priority Level Status bit⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.

2: The IPL3 bit is concatenated with the IPL<2:0: bits (SR<7:5>) to form the CPU Interrupt priority Level.

bit 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF
bit 15			•			·	bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF
bit 7	002li	10211			00111	10111	bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit. rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
			·				
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13	AD1IF: A/D	Conversion Cor	nplete Interrup	t Flag Status bit			
	1 = Interrupt	request has oc request has no	curred	U			
bit 12	•	RT1 Transmitte		Status bit			
	1 = Interrupt	request has oc	curred				
L:1 4 4	-	request has no					
oit 11		RT1 Receiver li request has oc					
		request has no					
bit 10	-	1 Event Interrup		it			
	1 = Interrupt	request has oc request has no	curred				
bit 9		1 Fault Interrup		it			
bit 0		request has oc	•	it i			
	•	request has no					
bit 8	T3IF: Timer3	B Interrupt Flag	Status bit				
		request has oc request has no					
bit 7	T2IF: Timer2	2 Interrupt Flag	Status bit				
	•	request has oc					
hit C	•	request has no		nt Flag Status k	.:+		
bit 6	-	out Compare Ch request has oc		pi riag Status i	JIL		
	•	request has no					
bit 5	IC2IF: Input	Capture Chann	el 2 Interrupt F	lag Status bit			
	•	request has oc request has no					
bit 4	-	nted: Read as '					
bit 3	-	Interrupt Flag					
		request has oc					
		request has no					
bit 2	-	out Compare Ch		pt Flag Status b	pit		
		request has oc					
		request has no					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽¹⁾	—	TSIDL ⁽¹⁾		_	—	_	—		
bit 15							bit		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0		
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,2)	—		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own		
bit 15	TON: Timery	On bit ⁽¹⁾							
	1 = Starts 16	-bit Timery							
	0 = Stops 16	-bit Timery							
bit 14	Unimplemen	ted: Read as '0)'						
bit 13	TSIDL: Time	ry Stop in Idle N	lode bit ⁽¹⁾						
				evice enters Idle	e mode				
	0 = Continue	s module opera	tion in Idle mod	de					
bit 12-7		ted: Read as '0							
bit 6	TGATE: Time	ery Gated Time	Accumulation I	Enable bit ⁽¹⁾					
	When TCS =								
	-	his bit is ignored.							
	<u>When TCS =</u> 1 = Cated tir	<u>_0:</u> ne accumulatio	a is onabled						
		ne accumulation							
bit 5-4		: Timery Input (Select bits ⁽¹⁾					
	11 = 1:256	5 1							
	10 = 1:64								
	01 = 1:8								
	00 = 1:1								
bit 3-2	•	ted: Read as '0							
bit 1		Clock Source S							
		clock from pin, clock (Fosc/2)	TyCK (on the r	ising edge)					
	Unimplemen								

operation; all timer functions are set through T2CON and T4CON.

2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends a NACK during Acknowledge 0 = Sends an ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at the end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware is clear at the end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of master Start sequence. 0 = Start condition is not in progress

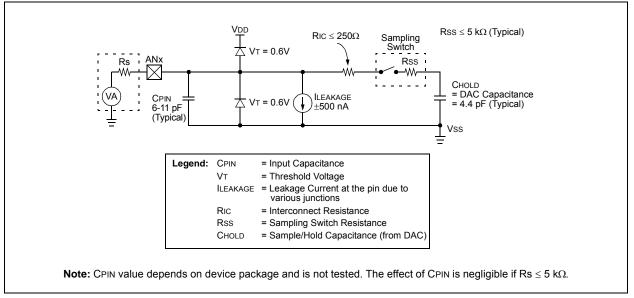
Note 1: In Slave mode, the module will not automatically clock stretch after receiving the address byte.

REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'


EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$TAD = TCY \bullet (ADCS + 1)$$

$$ADCS = \frac{TAD}{TCY} - 1$$

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

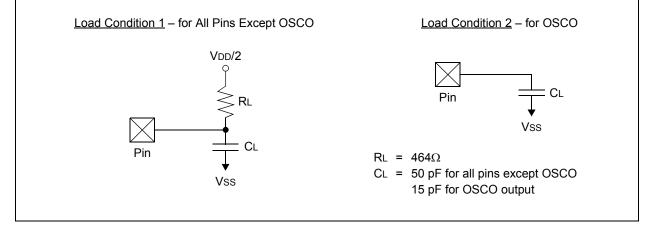
FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER

U	U	U	U	U	U	U	U
	—	—	—	—	—	—	—
bit 23							bit 16
U	U	U	U	U	U	U	R
—	—	—	—	—		—	MAJRV2
bit 15							bit 8
R	R	U	U	U	R	R	R
MAJRV1	MAJRV0	—	—	—	DOT2	DOT1	DOT0
bit 7							bit 0

Legend: R = Read-only bit	U = Unimplemented bit	
---------------------------	-----------------------	--

- bit 23-9 Unimplemented: Read as '0'
- bit 8-6 MAJRV<2:0>: Major Revision Identifier bits
- bit 5-3 Unimplemented: Read as '0'
- bit 2-0 DOT<2:0>: Minor Revision Identifier bits

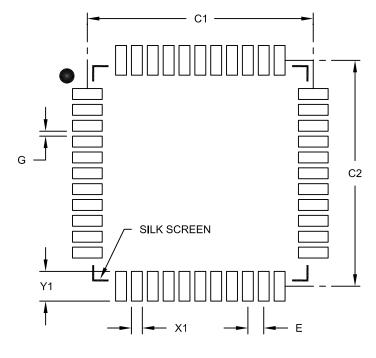

27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ64GA004 family AC characteristics and timing parameters.

TABLE 27-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	2.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature	$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
AC CHARACTERISTICS		$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as des	cribed in Section 27.1 "DC Characteristics".

FIGURE 27-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS


Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_		15	pF	In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

NOTES:

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimensi	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

INDEX

Α	
A/D Converter	
Analog Input Model	
Transfer Function	
AC Characteristics	
A/D Conversion Requirements	
A/D Specifications	
CLKO and I/O Requirements	
External Clock Requirements	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
PLL Clock Specifications	
Temperature and Voltage Specifications	
Additional Guidance for Family Applications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	4
16-Bit Timer1 125	5
Accessing Program Memory with	
Table Instructions45	5
Addressable Parallel Slave Port Example 174	4
Addressing for Table Registers47	7
CALL Stack Frame43	3
Comparator I/O Operating Modes203	3
Comparator Voltage Reference 207	7
CPU Programmer's Model25	
CRC Module189	
CRC Shift Engine190	С
Data Access from Program Space	
Address Generation 44	
I ² C Module 152	2
Input Capture x133	
LCD Control Example, Byte Mode 176	
Legacy Parallel Slave Port Example174	
Load Conditions for Timing Specifications244	
MCLR Pin Connections18	
On-Chip Regulator Connections 215	
Output Compare x138	3
Parallel EEPROM (Up to 11-Bit Address,	
16-Bit Data)176	3
Parallel EEPROM (Up to 11-Bit Address,	
8-Bit Data)176	
Parallel Master Port (PMP) Module Overview	
PIC24F CPU Core	
PIC24FJ64GA004 Family (General)10)
PMP 8-Bit Multiplexed Addressing and	_
Data Application176	
PMP Master Mode, Demultiplexed Addressing 174	1
PMP Master Mode, Fully	_
Multiplexed Addressing	С
PMP Master Mode, Partially	_
Multiplexed Addressing	
PMP Multiplexed Addressing Application	C
PMP Partially Multiplexed	_
Addressing Application	
PSV Operation	
Real-Time Clock and Calendar (RTCC) 177	ſ

Recommended Minimum Connections	17
Reset System	53
Shared I/O Port Structure	105
Simplified UARTx Module	159
SPIx Master/Frame Master Connection	149
SPIx Master/Frame Slave Connection	149
SPIx Master/Slave Connection	
(Enhanced Buffer Mode)	148
SPIx Master/Slave Connection	
(Standard Mode)	148
SPIx Module (Enhanced Mode)	143
SPIx Module (Standard Mode)	142
SPIx Slave/Frame Master Connection	149
SPIx Slave/Frame Slave Connection	149
Suggested Placement of Oscillator Circuit	21
System Clock	95
Timer2 and Timer4 (16-Bit Synchronous Mode)	129
Timer2/3 and Timer4/5 (32-Bit Mode)	128
Timer3 and Timer5 (16-Bit Synchronous Mode)	129
Watchdog Timer (WDT)	217

С

C Compilers	
MPLAB C18	220
Code Examples	
Basic Clock Switching Example	101
Configuring UART1 Input and Output	
Functions (PPS)	110
Erasing a Program Memory Block	50
I/O Port Read/Write	106
Initiating a Programming Sequence	51
Loading the Write Buffers	
Setting the RTCWREN Bit	
Single-Word Flash Programming	52
Code Protection	218
Comparator Voltage Reference	
Configuring	207
Configuration Bits	209
Core Features	7
CPU	
Arithmetic Logic Unit (ALU)	27
Control Registers	26
Core Registers	25
Programmer's Model	23
CRC	
Operation in Power Save Modes	190
Setup Example	189
User Interface	190
Customer Change Notification Service	273
Customer Notification Service	273
Customer Support	273
р	

D	
Data Memory	
Address Space	31
Memory Map	31
Near Data Space	32
Organization	32
SFR Space	32
Software Stack	43