

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Number								
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description				
RP0	4	1	21	I/O	ST	Remappable Peripheral.				
RP1	5	2	22	I/O	ST]				
RP2	6	3	23	I/O	ST					
RP3	7	4	24	I/O	ST					
RP4	11	8	33	I/O	ST					
RP5	14	11	41	I/O	ST					
RP6	15	12	42	I/O	ST					
RP7	16	13	43	I/O	ST					
RP8	17	14	44	I/O	ST					
RP9	18	15	1	I/O	ST					
RP10	21	18	8	I/O	ST					
RP11	22	19	9	I/O	ST					
RP12	23	20	10	I/O	ST					
RP13	24	21	11	I/O	ST					
RP14	25	22	14	I/O	ST					
RP15	26	23	15	I/O	ST					
RP16	_		25	I/O	ST					
RP17	_		26	I/O	ST					
RP18	_	_	27	I/O	ST					
RP19	_	_	36	I/O	ST					
RP20	_		37	I/O	ST					
RP21	_	_	38	I/O	ST					
RP22	—		2	I/O	ST					
RP23	—		3	I/O	ST					
RP24	—	_	4	I/O	ST					
RP25	—		5	I/O	ST					
RTCC	25	22	14	0		Real-Time Clock Alarm Output.				
SCL1	17	14	44	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output.				
SCL2	7	4	24	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.				
SDA1	18	15	1	I/O	l ² C	I2C1 Data Input/Output.				
SDA2	6	3	23	I/O	l ² C	I2C2 Data Input/Output.				
SOSCI	11	8	33	I	ANA	Secondary Oscillator/Timer1 Clock Input.				
SOSCO	12	9	34	0	ANA	Secondary Oscillator/Timer1 Clock Output.				
Legend:	TTL = TTL inp	ut buffer	•	•	ST = 5	Schmitt Trigger input buffer				

Legend: TTL = TTL input buffer

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

ANA = Analog level input/output $I^2 C^{TM} = I^2 C/SMBu$ **Note 1:** Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

TABLE 4-10: UART REGISTER MAP

	-	-																
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN		USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	—	—	—	_	_	UTX8	UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	0000
U1RXREG	0226	_	_	_	_	_	_	_	URX8	URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0	0000
U1BRG	0228							Baud R	ate Genera	tor Prescale	r Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_	UTX8	UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	0000
U2RXREG	0236	_	_	—	—	—	_	_	URX8	URX7	URX6	URX5	URX4	URX3	URX2	URX1	URX0	0000
U2BRG	0238							Bai	ud Rate Ge	enerator Pres	caler							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: SPI REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	-	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	-	_	_	_	_	_	_	_	-	-	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							SP	11 Transmit/	Receive Bu	ffer							0000
SPI2STAT	0260	SPIEN	_	SPISIDL	-	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	-	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	-	_	_	_	_	_	_	_	-	-	_	SPIFE	SPIBEN	0000
SPI2BUF	0268							SP	12 Transmit/	Receive Bu	ffer							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

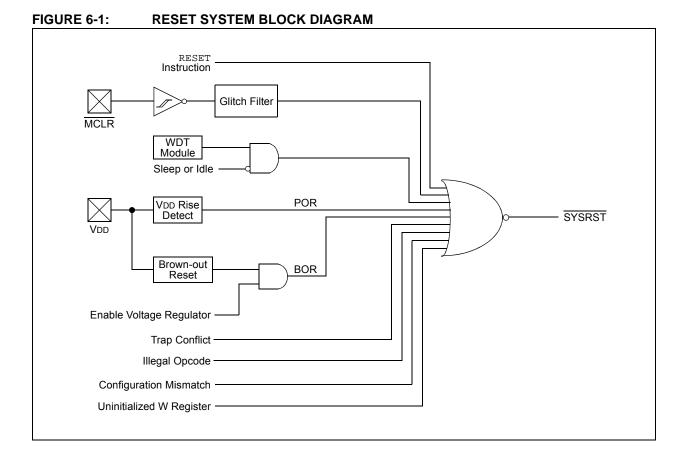
6.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Reset"** (DS39712).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.


Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

NOTES:

	Vector		AIVT	Inte	errupt Bit Loca	tions
Interrupt Source	Number	IVT Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000034h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC0<0>	IPC8<2:0>
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
Low-Voltage Detect (LVD)	72	0000A4h	000124h	IFS4<8>	IEC4<8>	IPC17<2:0>

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit
	<u>If FSCM is enabled (FCKSM1 = 1):</u>
	1 = Clock and PLL selections are locked
	0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
	<u>If FSCM is disabled (FCKSM1 = 0):</u>
	Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	IOLOCK: I/O Lock Enable bit ⁽²⁾
	1 = I/O lock is active
	0 = I/O lock is not active
bit 5	LOCK: PLL Lock Status bit ⁽³⁾
	1 = PLL module is in lock or PLL module start-up timer is satisfied
	0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 4 bit 3	CF: Clock Fail Detect bit
	•
	CF: Clock Fail Detect bit
	CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure
bit 3	 CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 3 bit 2	 CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected Unimplemented: Read as '0'
bit 3 bit 2	CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected Unimplemented: Read as '0' SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
bit 3 bit 2	 CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected Unimplemented: Read as '0' SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit 1 = Enables Secondary Oscillator
bit 3 bit 2 bit 1	 CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected Unimplemented: Read as '0' SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit 1 = Enables Secondary Oscillator 0 = Disables Secondary Oscillator
bit 3 bit 2 bit 1	 CF: Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected Unimplemented: Read as '0' SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit 1 = Enables Secondary Oscillator 0 = Disables Secondary Oscillator OSWEN: Oscillator Switch Enable bit

Note 1: Reset values for these bits are determined by the FNOSCx Configuration bits.

- 2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1' once the IOLOCK bit is set, it cannot be cleared.
- 3: Also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0

REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits

REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—			
						bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0			
						bit 0			
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown			
			U-0 U-0 R/W-1 — — SS1R4 bit W = Writable bit	— — — — U-0 U-0 R/W-1 R/W-1 — — — SS1R4 SS1R3 bit W = Writable bit U = Unimplem	— Image: Marce of the field of th	— —			

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits

REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15				bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7						bit 0	
Legend:							
R = Readable	dable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn Pin bits

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1 ⁽¹⁾	RP25R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾
bit 7			•	•			bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	
bit 15-13	Unimplemen	ted: Read as '@	י'				

REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 15-13 Unimplemented: Read as '0

RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits⁽¹⁾ bit 12-8 (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits⁽¹⁾ bit 4-0 (see Table 10-3 for peripheral function numbers)

Note 1: These bits are only available on the 44-pin devices; otherwise, they read as '0'.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON		TSIDL				_	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0			
_	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾		TCS ⁽²⁾	_			
bit 7							bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own			
		0.11								
bit 15	TON: Timerx									
	When TxCOM 1 = Starts 32									
	0 = Stops 32	•								
	When TxCO	-								
	1 = Starts 16									
	0 = Stops 16		- 1							
bit 14	•	ted: Read as '								
bit 13	TSIDL: Timerx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode									
					e mode					
bit 12-7	 0 = Continues module operation in Idle mode Unimplemented: Read as '0' 									
bit 6	-	erx Gated Time		Enable bit						
	When TCS =									
	This bit is ign									
	When TCS =									
		ne accumulatio ne accumulatio								
bit 5-4		: Timerx Input		Select bits						
	11 = 1:256	i mont mpat								
	10 = 1:64									
	01 = 1:8									
hit 2	00 = 1:1	imer Mode Sele	not hit(1)							
bit 3		nd Timery form		timer						
		nd Timery act a								
		e, T3CON cont			er operation.					
bit 2	Unimplemer	ted: Read as '	0'							
bit 1	TCS: Timerx	Clock Source S	Select bit ⁽²⁾							
		l clock from pin clock (Fosc/2)	, TxCK (on the	rising edge)						
bit 0	Unimplemer	ted: Read as '	0'							
Note 1: In	n 32-bit mode, th	e T3CON or T	5CON control h	its do not affec	t 32-hit timer o	neration				
						more informatio	n, see			
	ection 10.4 "Pe						,			

REGISTER 12-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	—	TSIDL ⁽¹⁾		_	—	_	—				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,2)	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own				
bit 15	TON: Timery	On bit ⁽¹⁾									
	1 = Starts 16	-bit Timery									
	0 = Stops 16	-bit Timery									
bit 14	Unimplemen	ted: Read as '0)'								
bit 13	TSIDL: Time	ry Stop in Idle M	lode bit ⁽¹⁾								
	1 = Discontinues module operation when device enters Idle mode										
	0 = Continue	s module opera	tion in Idle mod	de							
bit 12-7		ted: Read as '0									
bit 6	TGATE: Time	ery Gated Time	Accumulation I	Enable bit ⁽¹⁾							
	$\frac{\text{When TCS} = 1}{\text{T} + 1}$										
	This bit is ignored.										
	<u>When TCS = 0:</u> 1 = Gated time accumulation is enabled										
		ne accumulation									
bit 5-4		: Timery Input (Select bits ⁽¹⁾							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3-2	•	ted: Read as '0									
bit 1		Clock Source S									
		clock from pin, clock (Fosc/2)	TyCK (on the r	ising edge)							
	Unimplemented: Read as '0'										

operation; all timer functions are set through T2CON and T4CON.

2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 15-1: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	 1 = Transmit has not yet started, SPIxTXB is full 0 = Transmit has started, SPIxTXB is empty
	In Standard Buffer mode: Automatically set in hardware when CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.
	In Enhanced Buffer mode: Automatically set in hardware when CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	1 = Receive is complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty
	In Standard Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.
	In Enhanced Buffer mode: Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See **Section 10.4** "**Peripheral Pin Select (PPS)**" for more information.

19.1.5 ALRMVAL REGISTER MAPPINGS

REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

VCFG2 VCFG1 VCFG0 — — CSCNA — _ bit 8 bit 8 Dit 9 Dit 9 <thdit 9<="" th=""> <thdit 9<="" th=""> <thdit 9<="" t<="" th=""><th>R/W-0</th><th>R/W-0</th><th>R/W-0</th><th>U-0</th><th>U-0</th><th>R/W-0</th><th>U-0</th><th>U-0</th></thdit></thdit></thdit>	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0
bit 15 bit 8	VCFG2	VCFG1	VCFG0	—	—	CSCNA	—	—
	bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVDD*	AVss*
001	External VREF+ Pin	AVss*
010	AVDD*	External VREF- Pin
011	External VREF+ Pin	External VREF- Pin
1xx	AVDD*	AVss*

* AVDD and AVss inputs are tied to VDD and Vss on 28-pin devices.

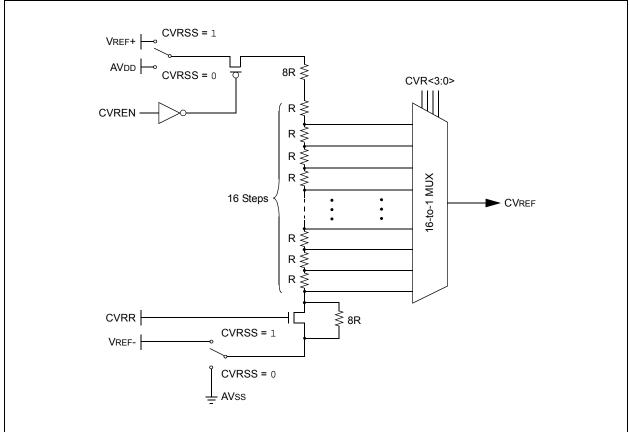
bit 12-11 Unimplemented: Read as '0'

	•
bit 10	CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit
	1 = Scans inputs
	0 = Does not scan inputs
bit 9-8	Unimplemented: Read as '0'
bit 7	BUFS: Buffer Fill Status bit (valid only when BUFM = 1)
	 1 = A/D is currently filling Buffer 08-0F, user should access data in 00-07 0 = A/D is currently filling Buffer 00-07, user should access data in 08-0F
bit 6	Unimplemented: Read as '0'
bit 5-2	SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
	1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
	1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
	0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
	0000 = Interrupts at the completion of conversion for each sample/convert sequence
bit 1	BUFM: Buffer Mode Select bit
	1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
	0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A
	input multiplexer settings for all subsequent samples
	0 = Always uses MUX A input multiplexer settings

NOTES:

23.0 COMPARATOR VOLTAGE REFERENCE

Note:	This data sheet summarizes the features of							
	this group of PIC24F devices. It is not							
	intended to be a comprehensive reference							
	source. For more information, refer to							
	the "PIC24F Family Reference Manual",							
	"Comparator Voltage Reference							
	Module" (DS39709).							


23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides two ranges of

output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

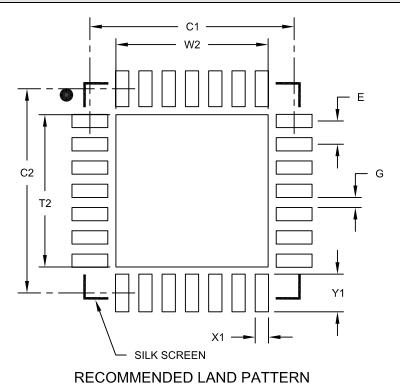
FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter Typical ⁽¹⁾ Max			Units	Conditions				
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is '0' ⁽²⁾								
DC60	0.1	1	μA	-40°C				
DC60a	0.15	1	μA	+25°C				
DC60m	2.2	7.4	μA	+60°C	2.0V ⁽³⁾			
DC60b	3.7	12	μΑ	+85°C				
DC60j	15	50	μA	+125°C				
DC60c	0.2	1	μΑ	-40°C				
DC60d	0.25	1	μΑ	+25°C	2.5∨ ⁽³⁾			
DC60n	2.6	15	μΑ	+60°C		Base Power-Down Current ⁽⁵⁾		
DC60e	4.2	25	μΑ	+85°C				
DC60k	16	100	μΑ	+125°C				
DC60f	3.3	9	μΑ	-40°C				
DC60g	3.5	10	μA	+25°C				
DC60o	6.7	22	μΑ	+60°C	3.3∨ (4)			
DC60h	9	30	μA	+85°C				
DC60I	36	120	μA	+125°C				
DC61	1.75	3	μΑ	-40°C				
DC61a	1.75	3	μA	+25°C				
DC61m	1.75	3	μA	+60°C	2.0V ⁽³⁾			
DC61b	1.75	3	μA	+85°C				
DC61j	3.5	6	μA	+125°C				
DC61c	2.4	4	μA	-40°C				
DC61d	2.4	4	μA	+25°C				
DC61n	2.4	4	μA	+60°C	2.5V ⁽³⁾	Watchdog Timer Current: △IwDT(
DC61e	2.4	4	μA	+85°C				
DC61k	4.8	8	μΑ	+125°C				
DC61f	2.8	5	μΑ	-40°C				
DC61g	2.8	5	μA	+25°C				
DC61o	2.8	5	μA	+60°C	3.3V ⁽⁴⁾			
DC61h	2.8	5	μA	+85°C				
DC61I	5.6	10	μA	+125°C				

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.


3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETERS MIN NOM MAX 0.65 BSC 4.25 4.25 4.25 5.70 5.70		
Dimensior	MIN	NOM	MAX	
Contact Pitch			0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
[Dimension Limits	MIN	NOM	MAX	
Number of Leads	N	44			
Lead Pitch	е		0.80 BSC		
Overall Height	A	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	—	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D	12.00 BSC			
Molded Package Width	Package Width E1 10.00 BSC				
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support