

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description					
ASR	Arithmetic shift right source register by one or more bits.					
SL	Shift left source register by one or more bits.					
LSR	Logical shift right source register by one or more bits.					

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(CW2<10:8>)
MCLR	COSC<2:0> Control bits
WDTO	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the system Master Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time that the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT + TRST	_	1, 2, 7
	FRC, FRCDIV	TPOR + TPWRT + TRST	TFRC	1, 2, 3, 7
	LPRC	TPOR + TPWRT + TRST	TLPRC	1, 2, 3, 7
	ECPLL	TPOR + TPWRT + TRST	TLOCK	1, 2, 4, 7
	FRCPLL	TPOR + TPWRT + TRST	TFRC + TLOCK	1, 2, 3, 4, 7
	XT, HS, SOSC	TPOR + TPWRT + TRST	Tost	1, 2, 5, 7
	XTPLL, HSPLL	TPOR + TPWRT + TRST	Tost + Tlock	1, 2, 4, 5, 7
BOR	EC	TPWRT + TRST	—	2, 7
	FRC, FRCDIV	TPWRT + TRST	TFRC	2, 3, 7
	LPRC	TPWRT + TRST	TLPRC	2, 3, 7
	ECPLL	TPWRT + TRST	TLOCK	2, 4, 7
	FRCPLL	TPWRT + TRST	TFRC + TLOCK	2, 3, 4, 7
	XT, HS, SOSC	TPWRT + TRST	Tost	2, 5, 7
	XTPLL, HSPLL	TPWRT + TRST	TFRC + TLOCK	2, 3, 4, 7
All Others	Any Clock	TRST		7

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- **2:** TPWRT = 64 ms nominal if regulator is disabled (ENVREG tied to Vss).
- **3:** TFRC and TLPRC = RC Oscillator Start-up Times.
- **4:** TLOCK = PLL Lock Time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.
- 7: TRST = Internal State Reset Timer

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	—
bit 15	1				1		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable I	pit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
DIT 15		R12 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt r	request has occ	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver In	terrupt Flag S	tatus bit			
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 13	INT2IF: Exter	nal Interrupt 2 I	ag Status bit				
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	tatus bit				
	1 = Interrupt r	request has occ	urred				
hit 11	0 = Interrupt 1	Interrupt Flag S	tatus bit				
DICTI	1 = Interrupt r	request has occ					
	0 = Interrupt r	request has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Cha	annel 4 Interru	ipt Flag Status b	oit		
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 9	OC3IF: Outpu	ut Compare Cha	annel 3 Interru	ipt Flag Status b	oit		
	1 = Interrupt r	request has occ	urred				
bit 0 <i>E</i>	0 = Interrupt r	request has not	occurred				
DIL 0-0 bit 4		red Interrupt 1	laa Status hit				
DIL 4			urred				
	0 = Interrupt r	request has not	occurred				
bit 3	CNIF: Input C	hange Notificat	ion Interrupt F	-lag Status bit			
	1 = Interrupt r	request has occ	urred .	U			
	0 = Interrupt r	request has not	occurred				
bit 2	CMIF: Compa	arator Interrupt	Flag Status bi	t			
	1 = Interrupt r	request has occ	urred				
b : t d		request has not	occurred				
DIC		ster 12C1 Event	Interrupt Flag	Status bit			
	$\perp - interrupt r0 = Interrupt r$	request has occ	occurred				
bit 0	SI2C1IF: Slav	ve I2C1 Event li	nterrupt Flag S	Status bit			
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INT0IE ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit		iented bit, read	d as '0'	
-n = Value at	POR	1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkr	iown
6:4 4 F 4 4		ted: Deed ee '	、				
DIL 15-14		ted: Read as () oplata latarawa	- Frankla kit			
DIL 13	1 = Interrupt r			Enable bit			
	0 = Interrupt r	equest is not e	nabled				
bit 12	U1TXIE: UAR	RT1 Transmitter	Interrupt Enat	ole bit			
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 11	U1RXIE: UAR	RT1 Receiver Ir	nterrupt Enable	bit			
	1 = Interrupt r	equest is enab	led				
bit 10		Transfor Com		Enable bit			
	1 = Interrupt n	request is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 9	SPF1IE: SPI1	Fault Interrupt	t Enable bit				
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 8	T3IE: Timer3	Interrupt Enabl	e bit				
	1 = Interrupt r	equest is enab	led nabled				
bit 7	T2IE: Timer2	Interrunt Enabl	o hit				
Dit 7	1 = Interrupt r	request is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 6	OC2IE: Outpu	ut Compare Ch	annel 2 Interru	pt Enable bit			
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				
bit 5	IC2IE: Input C	Capture Channe	el 2 Interrupt E	nable bit			
	1 = Interrupt n	equest is enab	led nabled				
hit 4	Unimplement	ted: Read as '(ומסוכם ז'				
bit 3	T1IE: Timer1	Interrupt Fnabl	e bit				
	1 = Interrupt r	equest is enab	led				
	0 = Interrupt r	equest is not e	nabled				
Noto 1, If	$ \mathbf{N}\mathbf{T}\mathbf{y} \mathbf{E} = 1$ this	ovtornal intorr	unt input must	he configured t	o an availablo	PPn nin Soo S	Section 10.4

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

Note 1: If INTxIE = 1, this external interrupt input must be configured to an available RPn pin. See **Section 10.4 "Peripheral Pin Select (PPS)"** for more information.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	י'				
bit 14-12	U1RXIP<2:0>	UART1 Rece	eiver Interrupt F	Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 11	Unimplemen	ted: Read as '	כי				
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	bits			
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '					
bit 6-4	SPF1IP<2:0>	: SPI1 Fault In	terrupt Priority	bits			
	111 = Interrup	ot is Priority 7 (highest priority	nterrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
1.11.0	000 = Interrup	ot source is dis	abled				
Dit 3		ted: Read as 1					
bit 2-0	13IP<2:0>: 1	imer3 Interrupt	Priority bits	· · · · · · · · · · · · · · · · · · ·			
		ot is priority 7 (nignest priority	Interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	ablad				
	000 = interrup	JU SOULCE IS DIS	auleu				

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL ⁽¹⁾	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN ⁽¹⁾	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Lenend							
Legena:	ala hit	HC = Hardwar	re Clearable bit		opted bit read	aa 'O'	
n = Value a		'1' = Bit is set	JIL	$(0)^{2} = \text{Bit is clear}$	ared	as u v = Bit is unkn	own
							own
bit 15	12CEN: 12Cx E	Enable bit					
	1 = Enables th	ne I2Cx module	and configures	s the SDAx and	SCLx pins as	serial port pins	
	0 = Disables t	he I2Cx module	e; all l ² C™ pins	are controlled	by port functior	าร	
bit 14	Unimplement	ted: Read as '0	3				
bit 13	I2CSIDL: I2C	x Stop in Idle M	ode bit				
	1 = Discontinu 0 = Continues	ies module ope module operat	ration when de	evice enters an	Idle mode		
bit 12	SCLREL: SCI	Lx Release Cor	ntrol bit (when c	operating as I ² C	Slave) ⁽¹⁾		
	1 = Releases	SCLx clock	× ×		,		
	0 = Holds SCI	Lx clock low (cl	ock stretch)				
	$\frac{\text{If STREN} = 1}{\text{Bit is } R/W}$	software may	write '0' to initi	ate stretch and	write '1' to rele	ase clock) Ha	rdware is clear
	at the beginnin	ng of slave tran	smission. Hard	ware is clear at	the end of slav	e reception.	
	If STREN = 0:	_					
	Bit is R/S (i.e. transmission.	, software may	only write '1' to	o release clock)	. Hardware is c	clear at the beg	inning of slave
bit 11	IPMIEN: Intell	igent Periphera	I Management	Interface (IPMI) Enable bit		
	1 = IPMI Supp 0 = IPMI mode	oort mode is en e is disabled	abled; all addre	esses are Ackno	owledged		
bit 10	A10M: 10-Bit	Slave Addressi	ng bit				
	1 = I2CxADD 0 = I2CxADD	is a 10-bit slave is a 7-bit slave	e address address				
bit 9	DISSLW: Disa	able Slew Rate	Control bit				
	1 = Slew rate 0 = Slew rate	control is disab control is enabl	led led				
bit 8	SMEN: SMBu	s Input Levels	bit				
	1 = Enables I/ 0 = Disables t	O pin threshold he SMBus inpu	ls compliant wit t thresholds	h the SMBus s	pecification		
bit 7	GCEN: Gener	al Call Enable	bit (when opera	nting as I ² C slav	/e)		
	1 = Enables i reception	nterrupt when a	a general call a	address is rece	ived in the I2C	xRSR (module	is enabled for
	0 = General c	all address is c	lisabled		20 (1)		
bit 6	STREN: SCL	k Clock Stretch	Enable bit (whe	en operating as	I ⁻ C slave)(')		
	1 = Enables s	oftware or rece	SULKEL DIT.	hina			
	0 = Disables s	software or rece	eive clock stretc	ching			

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER

Note 1: In Slave mode, the module will not automatically clock stretch after receiving the address byte.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	(1) TRSTAT		_	_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	S R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit 0
Legend:		C = Clearabl	e bit	HS = Hardware	e Settable bit		
R = Reada	ble bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	red	x = Bit is unkr	nown
HSC = Har	dware Settable/C	learable bit					
bit 15	ACKSTAT: A	cknowledge S	tatus bit ⁽¹⁾				
	1 = NACK wa	s detected las	st				
	0 = ACK was Hardware is s	detected last	the end of Ack	nowledge			
hit 14	TRSTAT. Tran	nemit Status hi	t (when onera	ting as l ² C™ ma	ster annlicable	to master trans	
	1 = Master tra	ansmit is in nr	naress (8 hits	+ ACK)			
	0 = Master tra	ansmit is not ir	n progress				
	Hardware is se	et at the beginn	ing of master t	ransmission. Har	dware is clear at	the end of slave	Acknowledge.
bit 13-11	Unimplemen	ted: Read as	'0'				
bit 10	BCL: Master	Bus Collision	Detect bit				
	1 = A bus col	lision has bee	n detected du	ring a master op	eration		
	0 = No collisio	ON Set at the deter	ction of hus co	llision			
hit Q		ooral Call Stat	ue hit	JIISION.			
Dit 9	1 = General c	all address w	as received				
	0 = General c	all address wa	as not receive	d			
	Hardware is s	et when an ad	dress matches	s the general cal	l address. Hardv	vare is clear at	Stop detection.
bit 8	ADD10: 10-B	it Address Sta	itus bit				
	1 = 10-bit add	lress was mat	ched				
	0 = 10-bit add	Iress was not	matched	of motobod 10 l	ait address. Hard	lwara ia alaar at	Stop dotaction
bit 7			n Dotoct hit			iwale is clear at	Stop detection.
	$1 = \Delta n$ attempt	to write to th	n Delect bit	nister failed her	cause the l^2 C m	odule is busy	
	0 = No collision	on on the second				ouule is busy	
	Hardware is s	et at the occu	rrence of a wr	ite to I2CxTRN	while busy (clea	ared by software	e).
bit 6	12COV: 12Cx	Receive Over	flow Flag bit				
	1 = A byte wa	is received wh	ile the I2CxR	CV register is st	ill holding the pr	evious byte	
	0 = No overflo)W hot at an attam	nt to transfor		vPCV (alcored	by coffwore)	
	naruware IS S	et at an attem	ipt to transfer	1202838 10 120		by soltware).	
Note 1:	In both Master an reception of an A	d Slave mode CK or NACK f	s, the ACKST rom another d	AT bit is only up evice. Do not ch	dated when tran	nsmitting data re f ACKSTAT whe	esulting in the en receiving

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 5	D/A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from slave
	0 = Write – Indicates data transfer is input to slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	U = Receive is not complete, I2CXRCV is empty Hardware is set when I2CXRCV is written with received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes I2CxTRN. Hardware is clear at completion of data transmission.

Note 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data, either as a slave or a master. Reading ACKSTAT after receiving address or data bytes returns an invalid result.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

AMSK<9:0>: Mask for Address Bit x Select bits

- 1 = Enables masking for bit x of incoming message address; bit match is not required in this position
- 0 = Disables masking for bit x; bit match is required in this position

bit 9-0

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV			IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	IBF: Input But	ffer Full Status	bit				
	1 = All writab	le Input Buffer	registers are fu	III registere ere e	matu		
bit 11			Status bit	registers are e	mpty		
DIL 14	1 = A write at	tempt to a full l	Sidius Dii Input Byte regi	ster occurred (r	must be cleared	d in software)	
	0 = No overflo	ow occurred	input Dyte regi		nust be cleared		
bit 13-12	Unimplement	ted: Read as 'd)'				
bit 11-8	IB3F:IB0F: In	put Buffer x Sta	atus Full bits				
	1 = Input Buf	fer x contains d	lata that has no	ot been read (re	eading buffer w	ill clear this bit)
	0 = Input Buf	fer x does not o	contain any uni	read data			
bit 7	OBE: Output	Buffer Empty S	tatus bit				
	1 = All readal	ble Output Buff	er registers are	e empty			
h:1 0	0 = Some or	all of the reada		ter registers ar	e full		
DIT 6		it Buffer Underf	low Status bit	Puto register (must be cleare	d in coffworo)	
	1 = Aread of 0 = No under	flow occurred		byte register (must be cleare	u in soltware)	
bit 5-4	Unimplement	ted: Read as 'd)'				
bit 3-0	OB3E:OB0E	Output Buffer x	Status Empty	bits			
	1 = Output B	uffer x is empty	(writing data t	o the buffer will	l clear this bit)		
	0 = Output B	uffer x contains	data that has	not been transi	mitted		

REGISTER 18-5: PMSTAT: PARALLEL PORT STATUS REGISTER

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

bit 7-0 CAL<7:0>: RTCC Drift Calibration bits

...

01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

... 01111111 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	-	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—		—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at	t POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			wn			

REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

bit 15-2	Unimplemented: Read as '0'
bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	1 = RTCC seconds clock is selected for the RTCC pin0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

FIGURE 20-2: CRC SHIFT ENGINE DETAIL

20.1 User Interface

20.1.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN<3:0> (CRCCON<3:0>) > 7 and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN<3:0> = 5, then the size of the data is PLEN<3:0> + 1 = 6. When loading data, the two MSbs of the data byte are ignored.

Once data is written into the CRCWDAT MSb (as defined by PLENx), the value of VWORD<4:0> (CRCCON<12:8>) increments by one. When CRCGO = 1 and VWORDx > 0, a word of data to be shifted is moved from the FIFO into the shift engine. When the data word moves from the FIFO to the shift engine, the VWORDx bits decrement by one. The serial shifter continues to receive data from the FIFO, shifting until the VWORDx bits reach 0. The last bit of data will be shifted through the CRC module (PLENx + 1)/2 clock cycles after the VWORDx bits reach 0. This is when the module is completed with the CRC calculation.

Therefore, for a given value of PLENx, it will take (PLENx + 1)/2 * VWORDx number of clock cycles to complete the CRC calculations.

When the VWORD<4:0> bits reach 8 (or 16), the CRCFUL bit will be set. When the VWORD<4:0> bits reach 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words, so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORDx bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORDx Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 20.1.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

20.1.2 INTERRUPT OPERATION

When the VWORD<4:0> bits make a transition from a value of '1' to '0', an interrupt will be generated. Note that the CRC calculation is not complete at this point; an additional time of (PLEN + 1)/2 clock cycles is required before the output can be read.

20.2 Operation in Power Save Modes

20.2.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

20.2.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Output Compare"** (DS39706).

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

NOTES:

REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 **IOL1WAY:** IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK (OSCCON<6>) bit can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK (OSCCON<6>) bit can be set and cleared as needed, provided the unlock sequence has been completed

bit 3 Reserved

- bit 2 I2C1SEL: I2C1 Pin Select bit
 - 1 = Use default SCL1/SDA1 pins
 - 0 = Use alternate SCL1/SDA1 pins

bit 1-0 **POSCMD<1:0:>** Primary Oscillator Configuration bits

- 11 = Primary oscillator is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = EC Oscillator mode is selected
- **Note 1:** These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h or greater). Refer to **Section 28.0 "Packaging Information"** in the device data sheet for the location and interpretation of product date codes.

REGISTER 24-3: DEVID: DEVICE ID REGISTER

U	U	U	U	U	U	U	U
—	—	—	—	_	—	—	—
bit 23							bit 16

U	U	R	R	R	R	R	R
—		FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2
bit 15							bit 8

R	R	R	R	R	R	R	R
FAMID1	FAMID0	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Read-only	v bit	U = Unim	plemented bit
Logona.		y bit	0 011111	

bit 23-14 Unimplemented: Read as '1'

bit 13-6 FAMID<7:0>: Device Family Identifier bits

00010001 = PIC24FJ64GA004 family

- bit 5-0 DEV<5:0>: Individual Device Identifier bits
 - 000100 = PIC24FJ16GA002
 - 000101 = PIC24FJ32GA002
 - 000110 = PIC24FJ48GA002
 - 000111 = PIC24FJ64GA002
 - 001100 = PIC24FJ16GA004
 - 001101 = PIC24FJ32GA004
 - 001110 = PIC24FJ48GA004 001111 = PIC24FJ64GA004

TABLE 27-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		Standard Ope Operating tem	$ \begin{array}{ll} \mbox{rd Operating Conditions:} & \mbox{2.0V to 3.6V (unless otherwise stated)} \\ \mbox{ing temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \\ \end{array} $				
Parameter No.	Typical ⁽¹⁾	Мах	Units		Conditions			
Idle Current (I	IDLE): Core O	ff, Clock On	Base Current,	PMD Bits are Set ⁽²⁾				
DC40	150	200	μA	-40°C				
DC40a	150	200	μA	+25°C	2 ov (3)			
DC40b	150	200	μA	+85°C	2.00(*)			
DC40c	165	220	μA	+125°C				
DC40d	250	325	μA	-40°C		T MIPS		
DC40e	250	325	μA	+25°C	2 21/(4)			
DC40f	250	325	μA	+85°C	5.5007			
DC40g	275	360	μA	+125°C				
DC43	0.55	0.72	mA	-40°C				
DC43a	0.55	0.72	mA	+25°C	2 01/(3)			
DC43b	0.55	0.72	mA	+85°C	2.000			
DC43c	0.60	0.8	mA	+125°C				
DC43d	0.82	1.1	mA	-40°C		4 MIE 3		
DC43e	0.82	1.1	mA	+25°C	3 3/(4)			
DC43f	0.82	1.1	mA	+85°C	5.57			
DC43g	0.91	1.2	mA	+125°C				
DC47	3	4	mA	-40°C				
DC47a	3	4	mA	+25°C	2 51/(3)			
DC47b	3	4	mA	+85°C	2.500			
DC47c	3.3	4.4	mA	+125°C		16 MIPS		
DC47d	3.5	4.6	mA	-40°C		10 1011 0		
DC47e	3.5	4.6	mA	+25°C	3 3\/(4)			
DC47f	3.5	4.6	mA	+85°C	0.00			
DC47g	3.9	5.1	mA	+125°C				
DC50	0.85	1.1	mA	-40°C				
DC50a	0.85	1.1	mA	+25°C	2 0\/(3)			
DC50b	0.85	1.1	mA	+85°C	2.00			
DC50c	0.94	1.2	mA	+125°C				
DC50d	1.2	1.6	mA	-40°C				
DC50e	1.2	1.6	mA	+25°C	3 31/(4)			
DC50f	1.2	1.6	mA	+85°C	5.50.7			
DC50g	1.3	1.8	mA	+125°C				

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The test conditions for all IIDLE measurements are as follows: OSCI driven with external square wave from rail-to-rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions						
Power-Down	Current (IPD):	PMD Bits a	re Set, PMSL	.P Bit is '0' ⁽²⁾						
DC60	0.1	1	μA	-40°C						
DC60a	0.15	1	μA	+25°C						
DC60m	2.2	7.4	μA	+60°C	2.0V ⁽³⁾					
DC60b	3.7	12	μA	+85°C						
DC60j	15	50	μA	+125°C						
DC60c	0.2	1	μA	-40°C						
DC60d	0.25	1	μA	+25°C						
DC60n	2.6	15	μA	+60°C	2.5V ⁽³⁾	Base Power-Down Current ⁽⁵⁾				
DC60e	4.2	25	μA	+85°C						
DC60k	16	100	μΑ	+125°C						
DC60f	3.3	9	μA	-40°C						
DC60g	3.5	10	μΑ	+25°C						
DC60o	6.7	22	μΑ	+60°C	3.3∨ (4)					
DC60h	9	30	μA	+85°C						
DC60I	36	120	μΑ	+125°C						
DC61	1.75	3	μΑ	-40°C						
DC61a	1.75	3	μΑ	+25°C						
DC61m	1.75	3	μΑ	+60°C	2.0V ⁽³⁾					
DC61b	1.75	3	μΑ	+85°C						
DC61j	3.5	6	μΑ	+125°C						
DC61c	2.4	4	μΑ	-40°C						
DC61d	2.4	4	μΑ	+25°C						
DC61n	2.4	4	μΑ	+60°C	2.5V ⁽³⁾	Watchdog Timer Current: ∆IwDT ⁽⁵⁾				
DC61e	2.4	4	μΑ	+85°C						
DC61k	4.8	8	μΑ	+125°C		-				
DC61f	2.8	5	μΑ	-40°C						
DC61g	2.8	5	μΑ	+25°C						
DC61o	2.8	5	μΑ	+60°C	3.3∨ (4)					
DC61h	2.8	5	μΑ	+85°C						
DC61I	5.6	10	μΑ	+125°C						

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

28.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

© 2010-2013 Microchip Technology Inc.

	PADCFG1 (Pad Configuration Control)	173, 180
	PMADDR (Parallel Port Address)	171
	PMAEN (Parallel Port Enable)	171
-	PMCON (Parallel Port Control)	168
	PMMODE (Parallel Port Mode)	
1	PMSTAT (Parallel Port Status)	172
1	RUFGUAL (RIGU Calibration	
	and Configuration)	179
	DCON (Deast Control)	E A
1	RCON (Reset Control)	
	RPINR0 (Peripheral Pin Select Input 0)	111
	DDIND1 (Derinheral Din Salaat Input 1)	111
1		
	RPINR11 (Peripheral Pin Select Input 11)	114
1	RPINR18 (Perinheral Pin Select Input 18)	115
	RPINR19 (Peripheral Pin Select Input 19)	115
1	RPINR20 (Peripheral Pin Select Input 20)	116
	DDND24 (Derinherel Die Celeet Input 24)	440
	RPINR21 (Peripheral Pin Select Input 21)	
	RPINR22 (Peripheral Pin Select Input 22)	117
	DDIND22 (Deriphoral Din Select Input 22)	117
	REINR23 (Feripheral Fill Select input 23)	
	RPINR3 (Peripheral Pin Select Input 3)	112
	RPINR4 (Perinheral Pin Select Input 4)	112
l	RPINR7 (Peripheral Pin Select Input 7)	113
1	RPINR8 (Peripheral Pin Select Input 8)	113
	DDINDO (Derichersel Big Oslast Ingert 0)	
	RPINR9 (Peripheral Pin Select Input 9)	
	RPOR0 (Peripheral Pin Select Output 0)	
	PDOP1 (Peripheral Din Select Output 1)	110
	RPOR10 (Peripheral Pin Select Output 10)	123
	RPOR11 (Peripheral Pin Select Output 11)	123
	DDOD12 (Deripheral Din Select Output 12)	104
1	RFOR 12 (Felipheral Fill Select Output 12)	124
	RPOR2 (Peripheral Pin Select Output 2)	119
1	RPOR3 (Perinheral Pin Select Output 3)	119
	DDOD4 (Device and Div Oale at Output 0)	400
1	RPOR4 (Peripheral Piri Select Output 4)	
	RPOR5 (Peripheral Pin Select Output 5)	120
	RPOR6 (Perinheral Pin Select Output 6)	121
	RPOR7 (Peripheral Pin Select Output 7)	
	RPOR8 (Peripheral Pin Select Output 8)	122
	PDOP0 (Parinharal Din Salaat Output 0)	100
1		
	SPIxCON1 (SPIx Control 1)	146
	SPIxCON2 (SPIx Control 2)	147
	SPIXSTAT (SPIX Status and Control)	
	SR (ALU STATUS)	26, 63
-	T1CON (Timor1 Control)	126
	TxCON (Timer2 and Timer4 Control)	
	TyCON (Timer3 and Timer5 Control)	131
		100
		102
	UxRXREG (UARTx Receive)	166
1	LIVSTA (LIARTy Status and Control)	164
	UXIXREG (UARIX Transmit)	
,	WKDYHR (RTCC Weekday and Hours Value)	
	VEAD (DTCC Voor Volue)	100
Rese	ts	
1	Brown-out Reset (BOR)	53
	Cleak Source Selection	
	Configuration Mismatch Reset (CM)	
1	Delay Times	56
I	Device Reset Times	
	Illegal Opcode Reset (IOPUWR)	
	Master Clear Pin Reset (MCL P)	52
	Power-on Reset (POR)	53
	RCON Flags Operation	
	SED States	E7
:	Sottware RESET Instruction (SWR)	
	Trap Conflict Reset (TRAPR)	53
	Inipitialized W/ Register Reset (11M/R)	E0
	Watchdog Timer Reset (WDT)	53

Revision History	267
Alarm Configuration	186
Alarm Mask Settings	187
Calibration	186
Register Mapping	178
Write Lock	178

S

Serial Peripheral Interface. See SPI.	
SFR Space	32
Sleep Mode	103
Software Simulator (MPLAB SIM)	221
Software Stack	43
Special Features	8
SPI	
Enhanced Buffer Master Mode Setup	143
Enhanced Buffer Slave Mode Setup	143
Standard Master Mode Setup	141
Standard Slave Mode Setup	141
т	
Timer1	125
Timer2/3 and Timer4/5	127
Timing Diagrams	
CLKO and I/O	
External Clock	

U

UART
Baud Rate Generator (BRG) 160
Break and Sync Transmit Sequence 161
IrDA Support161
Operation of UxCTS and UxRTS Control Pins 161
Receiving in 8-Bit or 9-Bit Data Mode 161
Transmitting in 8-Bit Data Mode 161
Transmitting in 9-Bit Data Mode 161
Universal Asynchronous Receiver Transmitter. See UART.
Unused I/Os

۷

VDDCORE/VCAP Pin	215
Voltage Regulator (On-Chip)	215
and BOR	215
and POR	216
Low-Voltage Detection (LVD)	215
Standby Mode	216
Tracking Mode	215
Voltage Regulator Pins	19

W

Watchdog Timer (WDT)	
Windowed Operation	
WWW Address	273
WWW, On-Line Support	6