

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	16GA002	32GA002	48GA002	64GA002	16GA004	32GA004	48GA004	64GA004				
Operating Frequency				DC – 3	82 MHz							
Program Memory (bytes)	16K	32K	48K	64K	16K	32K	48K	64K				
Program Memory (instructions)	5,504	11,008	16,512	22,016	5,504	11,008	16,512	22,016				
Data Memory (bytes)	4096		8192		4096		8192					
Interrupt Sources (soft vectors/NMI traps)		43 (39/4)										
I/O Ports		Ports	s A, B			Ports /	A, B, C					
Total I/O Pins		2	!1			3	5					
Timers:												
Total Number (16-bit)	5 ⁽¹⁾											
32-Bit (from paired 16-bit timers)		2										
Input Capture Channels				5	(1)							
Output Compare/PWM Channels				5	(1)							
Input Change Notification Interrupt		2	21			3	0					
Serial Communications:												
UART	2(1)											
SPI (3-wire/4-wire)				2	(1)							
I ² C™	2											
Parallel Communications (PMP/PSP)	Yes											
JTAG Boundary Scan				Ye	es							
10-Bit Analog-to-Digital Module (input channels)		1	0		13							
Analog Comparators					2							
Remappable Pins	16 26											
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)											
Instruction Set		76 Base	Instruction	s, Multiple	Address	ing Mode	Variations					
Packages	28-Pin SPDIP/SSOP/SOIC/QFN 44-Pin QFN/TQFP											

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GA004 FAMILY

Note 1: Peripherals are accessible through remappable pins.

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

Typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE CHARACTERISTICS

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 2.5V or 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to

TABLE 4-17: PARALLEL MASTER/SLAVE PORT REGISTER MAP

				_		-												
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000
PMADDR	0604	_	CS1	_	_	_	ADDR10	ADDR9	ADDR8	ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	0000
PMDOUT1			Parallel Port Data Out Register 1 (Buffers 0 and 1)											0000				
PMDOUT2	0606						Pa	rallel Port D	ata Out Reg	gister 2 (Buf	fers 2 and 3)						0000
PMDIN1	0608						P	arallel Port I	Data In Regi	ster 1 (Buffe	ers 0 and 1)							0000
PMDIN2	060A						P	arallel Port I	Data In Regi	ster 2 (Buffe	ers 2 and 3)							0000
PMAEN	060C	_	PTEN14	_	_	_	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000
PMSTAT	060E	IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

	Dito	BIT 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets				
Alarm Value Register Window Based on ALRMPTR<1:0> :											
ARPT7 ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000				
d on RTCPTR<1:0>	>						xxxx				
CAL7 CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000				
on ARF d of CA	ALRMPTR<1:0 2T7 ARPT6 n RTCPTR<1:02 L7 CAL6	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 n RTCPTR<1:0> L7 CAL6 CAL5	ALRMPTR<1:0> ² T7 ARPT6 ARPT5 ARPT4 n RTCPTR<1:0> L7 CAL6 CAL5 CAL4	ALRMPTR<1:0> ² T7 ARPT6 ARPT5 ARPT4 ARPT3 n RTCPTR<1:0> L7 CAL6 CAL5 CAL4 CAL3	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 n RTCPTR<1:0> L7 CAL6 CAL5 CAL4 CAL3 CAL2	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 n RTCPTR<1:0> LT7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1	ALRMPTR<1:0> 2T7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 n RTCPTR<1:0> LT7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632				-	_		—	—	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON	0640	_	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	_	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0	0040
CRCXOR	0642	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCDAT	0644		CRC Data Input Register										0000					
CRCWDAT	0646		CRC Result Register 0000										0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility is enabled by setting the PSV bit in the CPU Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

		-			-		D 4 + 4 + 6
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	13IF
DIT 15							bit 8
R/W-0	R/W-0	R/M-0	11-0	R/W-0	R/W-0	R/\\/_0	R/W/-0
T2IF	OC2IE	IC2IE	_	T1IF	OC1IE	IC1IE	INTOIF
bit 7	002						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	AD1IF: A/D C	Conversion Con	plete Interrup	t Flag Status bit			
	1 = Interrupt r	request has occ request has not	concurred				
bit 12	U1TXIF: UAR	RT1 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 11	U1RXIF: UAF	RT1 Receiver Ir	iterrupt Flag S	tatus bit			
	1 = Interrupt r	request has occ	curred				
bit 10	SPI1IE SPI1	Event Interrunt	Flag Status h	it			
	1 = Interrupt r	request has occ	curred	it i			
	0 = Interrupt r	request has not	occurred				
bit 9	SPF1IF: SPI1	I Fault Interrupt	Flag Status b	it			
	1 = Interrupt r	request has occ	curred				
hit 8	T3IE· Timer3	Interrunt Flag	Status bit				
bit 0	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 7	T2IF: Timer2	Interrupt Flag S	Status bit				
	1 = Interrupt r	request has occ	curred				
bit 6		it Compare Ch	occurred	nt Elan Status k	nit		
	1 = Interrupt r	request has occ	curred	prinag Status r	Jit		
	0 = Interrupt r	request has not	occurred				
bit 5	IC2IF: Input C	Capture Channe	el 2 Interrupt F	lag Status bit			
	1 = Interrupt r	request has occ	curred				
hit 1	0 = Interrupt r	request has not	occurred				
Dil 4 bit 2		Interrupt Eleg 9) Statua hit				
DIL 3	1 = Interrupt r	request has occ	surred				
	0 = Interrupt r	request has not	occurred				
bit 2	OC1IF: Outpu	ut Compare Ch	annel 1 Interru	pt Flag Status b	bit		
	1 = Interrupt r	request has occ	curred .				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
	RTCIF	—	_	—	_	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0		
_	—	—	—	—	MI2C2IF	SI2C2IF	—		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	Unimpleme	nted: Read as '	0'						
bit 14	RTCIF: Rea	I-Time Clock/Ca	lendar Interrup	ot Flag Status bi	it				
	1 = Interrupt	t request has oc	curred						
	0 = Interrupt	t request has no	t occurred						
bit 13-3	Unimpleme	nted: Read as '	0'						
bit 2	MI2C2IF: Ma	aster I2C2 Even	t Interrupt Flag	g Status bit					
	1 = Interrupt	t request has oc	curred						
	0 = Interrupt	t request has no	t occurred						
bit 1	SI2C2IF: Sla	ave I2C2 Event	Interrupt Flag S	Status bit					
	1 = Interrupt	t request has oc	curred						
	0 = Interrupt	t request has not	t occurred						
bit 0	Unimpleme	nted: Read as '	0'						

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
	RTCIE	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	—	—	—	—	MI2C2IE	SI2C2IE	_
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	-Time Clock/Ca	lendar Interrup	ot Enable bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 13-3	Unimplemen	ted: Read as '	0'				
bit 2	MI2C2IE: Ma	ster I2C2 Even	t Interrupt Ena	ble bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 1	SI2C2IE: Sla	ve I2C2 Event	Interrupt Enabl	le bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains two 5-bit fields; each field being associated with one RPn pin (see Register 10-15 through Register 10-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-3).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '00000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 10-3: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)

Function	Output Function Number ⁽¹⁾	Output Name
NULL ⁽²⁾	0	NULL
C10UT	1	Comparator 1 Output
C2OUT	2	Comparator 2 Output
U1TX	3	UART1 Transmit
U1RTS ⁽³⁾	4	UART1 Request-to-Send
U2TX	5	UART2 Transmit
U2RTS ⁽³⁾	6	UART2 Request-to-Send
SDO1	7	SPI1 Data Output
SCK10UT	8	SPI1 Clock Output
SS10UT	9	SPI1 Slave Select Output
SDO2	10	SPI2 Data Output
SCK2OUT	11	SPI2 Clock Output
SS2OUT	12	SPI2 Slave Select Output
OC1	18	Output Compare 1
OC2	19	Output Compare 2
OC3	20	Output Compare 3
OC4	21	Output Compare 4
OC5	22	Output Compare 5

Note 1: Value assigned to the RPn<4:0> pins corresponds to the peripheral output function number.

- 2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.
- **3:** IrDA[®] BCLK functionality uses this output.

10.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention, caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

10.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7						•	bit 0
Logond							

Legena.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8	RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits
	(see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-3 for peripheral function numbers)

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP21R4 ⁽¹⁾	RP21R3 ⁽¹⁾	RP21R2 ⁽¹⁾	RP21R1 ⁽¹⁾	RP21R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP20R4 ⁽¹⁾	RP20R3 ⁽¹⁾	RP20R2 ⁽¹⁾	RP20R1 ⁽¹⁾	RP20R0 ⁽¹⁾
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits ⁽¹⁾
	(see Table 10-3 for peripheral function numbers)

bit 4-0 **RP20R<4:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits⁽¹⁾ (see Table 10-3 for peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP23R4 ⁽¹⁾	RP23R3 ⁽¹⁾	RP23R2 ⁽¹⁾	RP23R1 ⁽¹⁾	RP23R0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP22R4 ⁽¹⁾	RP22R3 ⁽¹⁾	RP22R2 ⁽¹⁾	RP22R1 ⁽¹⁾	RP22R0 ⁽¹⁾
bit 7							bit 0

REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin bits⁽¹⁾ (see Table 10-3 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits⁽¹⁾ (see Table 10-3 for peripheral function numbers)

Note 1: These bits are only available on the 44-pin devices; otherwise, they read as '0'.

Note 1: These bits are only available on the 44-pin devices; otherwise, they read as '0'.

16.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS39702).

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I^2C module supports these features:

- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- · Both 100 kHz and 400 kHz bus specifications
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL

A block diagram of the module is shown in Figure 16-1.

16.1 Peripheral Remapping Options

The I²C modules are tied to fixed pin assignments and cannot be reassigned to alternate pins using Peripheral Pin Select. To allow some flexibility with peripheral multiplexing, the I2C1 module in all devices can be reassigned to the alternate pins, designated as ASCL1 and ASDA1, during device configuration.

Pin assignment is controlled by the I2C1SEL Configuration bit; programming this bit (= 0) multiplexes the module to the ASCL1 and ASDA1 pins.

16.2 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

FIGURE 18-5: MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)

PIC24F	PMA<10:8>	
	PMD<7:0> PMA<7:0>	
	PMCS1	
		Address Bus
		Multiplexed
		Data and Address Bus
		Control Lines

FIGURE 18-6: MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)

FIGURE 18-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION

© 2010-2013 Microchip Technology Inc.

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				
hit 15 ADRC	• A/D Conversion Clock Source bit					

bit 15	
	1 = A/D internal RC clock
	0 = Clock derived from system clock
bit 14-13	Unimplemented: Read as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time bits
	11111 = 31 T AD
	00001 = 1 TAD
	00000 = 0 TAD (not recommended)
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111
	····· = Reserved
	0100000
	00111111 = 64 • T CY
	•••••
	00000001 = 2 • TCY
	00000000 = TCY

NOTES:

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_								
bit 15							bit 8	
r								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVROE CVRR CVRSS CVR3 CVR2 C						
bit 7							bit 0	
Legend:	b :4	$\lambda = \lambda $			anted bit read			
R = Readable			DIT		iented bit, read			
-n = Value at	POR	1° = Bit is set		0^{\prime} = Bit is clea	ared	x = Bit is unkn	own	
bit 15.9	Unimplomon	tod: Dood on '	۰ ٬					
bit 7								
DIL 7								
	1 = CVREF circuit is powered down0 = CVREF circuit is powered down							
bit 6	CVROE: Comparator VREF Output Enable bit							
	1 = CVREF voltage level is output on the CVREF pin							
	0 = CVREF voltage level is disconnected from the CVREF pin							
bit 5	CVRR: Comparator VREF Range Selection bit							
	1 = CVRSRC I	range should b	e 0 to 0.625 C		RSRC/24 step-s	ize		
1.1. A		range snould b	e 0.25 to 0.719		JVRSRC/32 ste	p-size		
bit 4	CVRSS: Com	parator VREF S	Source Selectio					
	1 = Comparator reference source, CVRSRC = VREF+ – VREF- 0 = Comparator reference source, CVRSRC = AVDD – AVSS							
bit 3-0	CVR<3:0>: C	omparator VRE	F Value Select	ion $0 \le CVR < 3$:	_ 0> ≤ 15 bits			
	When CVRR	= <u>1:</u>						
	CVREF = (CVF	R<3:0>/24) • (C	Vrsrc)					
	When CVRR	<u>= 0:</u>						
	CVREF = 1/4 •	(CVRSRC) + (C	VR<3:0>/32)	• (CVRSRC)				

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit4,Wnd	Wnd = Logical Right Shift Wb by lit4	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C. DC. N. OV. Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	£	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 20-2: INSTRUCTION SET OVERVIEW (CONTINUEL	TABLE 26-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
---	-------------	--------------------------------------

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dimens	ion Limits	MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	Е		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	K	0.20	_	_

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER	S		
Dimension	MIN	NOM	MAX		
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E		8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D		8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

		MILLIMETER	S	
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

DC Characteristics	
Comparator Specifications	243
Comparator Voltage Reference	
Specifications	243
I/O Pin Input Specifications	240
I/O Pin Output Specifications	242
Idle Current (IIDLE)	236
Internal Voltage Regulator Specifications	243
Operating Current (IDD)	235
Power-Down Current (IPD)	238
Program Memory Specifications	242
Temperature and Voltage Specifications	234
Details on Individual Family Members	8
Development Support	219
Device Features (Summary)	9
DISVREG Pin	215
Doze Mode	104

Е

Electrical Characteristics	
Absolute Maximum Ratings	. 231
Capacitive Loading Requirements on	
Output Pins	244
Thermal Operating Conditions	. 233
Thermal Packaging	. 233
V/F Graphs (Extended Temperature)	. 232
V/F Graphs (Industrial Temperature)	. 232
Equations	
A/D Conversion Clock Period	. 200
Baud Rate Reload Calculation	. 153
Calculating the PWM Period	. 136
Calculation for Maximum PWM Resolution	. 136
CRC Polynomial	. 189
Device and SPIx Clock Speed Relationship	. 150
UARTx Baud Rate with BRGH = 0	. 160
UARTx Baud Rate with BRGH = 1	. 160
Errata	6
External Oscillator Pins	21

F

Flash Configuration Words	30, 209
Flash Program Memory	
and Table Instructions	47
Enhanced ICSP Operation	
Operations	
Programming Algorithm	
RTSP Operation	
Single-Word Programming	

G

L

I/O Ports	
Analog Port Pins Configuration	
Input Change Notification	
Open-Drain Configuration	
Parallel (PIO)	
Peripheral Pin Select	
Pull-ups	

I²C

Baud Rate Setting When Operating as	
Bus Master	153
Clock Rates	153
Master in a Single Master Environment	
Communication	151
Peripheral Remapping Options	151
Reserved Addresses	153
ICSP Operations	155
Analog and Digital Pins Configuration	22
ICSP Pins	20
Idle Mode	104
In-Circuit Debugger	218
In-Circuit Serial Programming (ICSP)	218
Instruction Set	
Opcode Symbol Descriptions	224
Overview	225
Summary	223
Inter-Integrated Circuit. See I ² C.	
Internet Address	273
Interrupts	
Alternate Interrupt Vector Table (AIVT)	59
and Reset Sequence	59
Implemented Vectors	61
Interrupt vector Table (IVT)	59
Registers	62
Tran Voctors	94
Vector Table	00 60
	00
J	
J JTAG Interface	218
J JTAG Interface	218
J JTAG Interface M Meater Clear Bin (MCLB)	218
J JTAG Interface M Master Clear Pin (MCLR)	218 18
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPI AB ASM30 Assembler Linker Linker Interface	218 18 273 220
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development	218 18 273 220
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software	218 18 273 220 219
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer	218 18 273 220 219 221
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System	218 18 273 220 219 221 221
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian	218 273 220 219 221 221 221
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian	218 273 220 219 221 221 220
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N	218 18 273 220 219 221 221 220
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space	218 18 273 220 219 221 221 220 32
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space	218 18 273 220 219 221 221 220 32
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O	218 18 273 220 219 221 221 220 32
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching	218 18 273 220 219 221 221 220 32
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence	218 18 273 220 219 221 221 220 32
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme	218 18 273 220 219 221 221 220 32 32 100 101 96
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme Initial Configuration on POR	218 18 273 220 219 221 221 220 32 32 100 101 96 96
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme Initial Configuration on POR Oscillator Modes	218 18 273 220 219 221 221 220 32 32 100 101 96 96 96
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme Initial Configuration on POR Oscillator Modes Output Compare	218 18 273 220 219 221 221 220 32 32 100 101 96 96
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme Initial Configuration on POR Oscillator Modes Output Compare Continuous Output Pulse Generation Setup	218 18 273 220 219 221 221 221 32 32 100 101 96 96 96 135
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme Initial Configuration on POR Oscillator Modes Output Compare Continuous Output Pulse Generation Setup PWM Mode	218 18 273 220 219 221 221 221 220 32 100 101 96 96 96 135 136
J JTAG Interface M Master Clear Pin (MCLR) Microchip Internet Web Site MPLAB ASM30 Assembler, Linker, Librarian MPLAB Integrated Development Environment Software MPLAB PM3 Device Programmer MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian N Near Data Space O Oscillator Configuration Clock Switching Sequence CPU Clocking Scheme Initial Configuration on POR Oscillator Modes Output Compare Continuous Output Pulse Generation Setup PWM Mode Period and Duty Cycle Calculation	218 18 273 220 219 221 221 221 220 32 100 101 96 96 96 135 136 137