

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga002t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

	I	Pin Number				
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
T1CK	12	9	34	Ι	ST	Timer1 Clock.
TCK	17	14	13	-	ST	JTAG Test Clock Input.
TDI	21	18	35	-	ST	JTAG Test Data Input.
TDO	18	15	32	0	_	JTAG Test Data Output.
TMS	22	19	12	-	ST	JTAG Test Mode Select Input.
Vdd	13, 28	10, 25	28, 40	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins.
VDDCAP	20	17	7	Р	_	External Filter Capacitor Connection (regulator enabled).
VDDCORE	20	17	7	Р	—	Positive Supply for Microcontroller Core Logic (regulator disabled).
VREF-	3	28	20	-	ANA	A/D and Comparator Reference Voltage (low) Input.
VREF+	2	27	19	Ι	ANA	A/D and Comparator Reference Voltage (high) Input.
Vss	8, 27	5, 24	29, 39	Р	—	Ground Reference for Logic and I/O Pins.
Legend:	TTL = TTL inp	ut buffer			ST = 5	Schmitt Trigger input buffer

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffe $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	RTCIF	_	_	_		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
			—		MI2C2IF	SI2C2IF	
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	Unimplemen	ted: Read as ')'				
bit 14	RTCIF: Real-	Time Clock/Cal	endar Interrup	t Flag Status bi	t		
		request has occ					
		request has not					
bit 13-3	Unimplemen	ted: Read as 'o)'				
bit 2		ster I2C2 Event		Status bit			
	•	request has occ					
	-	request has not					
bit 1		ve I2C2 Event I		Status bit			
		request has occ					
1.11.0	-	request has not					
bit 0	Unimplemen	ted: Read as '0).				

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—		LVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
		—		CRCIF	U2ERIF	U1ERIF	
bit 7							bit C
Legend:							
R = Readal	ble bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			own
bit 15-9 bit 8	LVDIF: Low-V 1 = Interrupt i 0 = Interrupt i	Ited: Read as '0 /oltage Detect In request has occ request has not	nterrupt Flag urred occurred	Status bit			
bit 7-4	Unimplemen	ted: Read as '0	3				
bit 3	1 = Interrupt i	Generator Inter request has occ request has not	urred	tus bit			
bit 2	1 = Interrupt	RT2 Error Interru request has occ request has not	urred	ıs bit			
bit 1	1 = Interrupt	RT1 Error Interru request has occ request has not	urred	ıs bit			
bit 0	Unimplemen	ted: Read as '0	,				

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
0-0	IC2IP2	IC2IP1	IC2IP0	0-0	0-0	0-0	0-0
bit 7	10211 2	10211 1	10211 0				bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	-	nted: Read as '					
bit 14-12		Timer2 Interrupt	•				
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
	•						
	•						
		ipt is Priority 1 ipt source is dis	abled				
bit 11	Unimplemer	nted: Read as '	0'				
bit 10-8	OC2IP<2:0>	: Output Compa	are Channel 2	Interrupt Priority	/ bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	•						
	• 001 = Interru	ipt is Priority 1					
		ipt is Priority 1 ipt source is dis	abled				
bit 7	000 = Interru						
	000 = Interru Unimplemer	ipt source is dis nted: Read as '	0'	rrupt Priority bits	6		
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as '	^{0'} Channel 2 Inte		3		
	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as fi Input Capture C	^{0'} Channel 2 Inte		3		
bit 7 bit 6-4	000 = Interru Unimplemer IC2IP<2:0>:	ipt source is dis nted: Read as fi Input Capture C	^{0'} Channel 2 Inte		5		
	000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru •	nted: Read as f Input Capture C Input Spriority 7 (^{0'} Channel 2 Inte		3		
	000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru	ipt source is dis nted: Read as fi Input Capture C	^{0'} Channel 2 Inter highest priorit <u>y</u>		5		

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CNIP2	CNIP1	CNIP0		CMIP2	CMIP1	CMIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	MI2C1P2	MI2C1P1	MI2C1P0		SI2C1P2	SI2C1P1	SI2C1P0
bit 7		11120111	11120110		012011 2	0120111	bit
							_
Legend: R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	CNIP<2:0>:	nput Change N	otification Inte	rrupt Priority bi	ts		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru						
		pt source is dis					
bit 11	-	ted: Read as '					
bit 10-8		Comparator Inte					
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
			rightest priority	/ interrupt)			
	•		nightest phones	/ interrupt)			
	•		night st phone	/ interrupt)			
	• • 001 = Interru	pt is Priority 1		, interrupt)			
bit 7	• • 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled	, interrupt)			
bit 7 bit 6-4	• • 001 = Interru 000 = Interru Unimplemen	pt is Priority 1 pt source is dis ted: Read as '	abled 0'				
bit 7 bit 6-4	• • • 001 = Interru 000 = Interru Unimplemen MI2C1P<2:0>	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1	abled o' Event Interrup	t Priority bits			
	• • • 001 = Interru 000 = Interru Unimplemen MI2C1P<2:0>	pt is Priority 1 pt source is dis ted: Read as '	abled o' Event Interrup	t Priority bits			
	• • • 001 = Interru 000 = Interru Unimplemen MI2C1P<2:0>	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1	abled o' Event Interrup	t Priority bits			
	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (abled o' Event Interrup	t Priority bits			
	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (pt is Priority 1	abled o' Event Interrup highest priority	t Priority bits			
bit 6-4	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (pt is Priority 1 pt source is dis	abled o' Event Interrup highest priority abled	t Priority bits			
bit 6-4 bit 3	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '	abled ^{0'} Event Interrup highest priority abled	t Priority bits / interrupt)			
	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (pt is Priority 1 pt source is dis	abled o' Event Interrup highest priority abled o' vent Interrupt	t Priority bits / interrupt) Priority bits			
bit 6-4 bit 3	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' •: Slave I2C1 E	abled o' Event Interrup highest priority abled o' vent Interrupt	t Priority bits / interrupt) Priority bits			
bit 6-4 bit 3	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' •: Master I2C1 pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' •: Slave I2C1 E	abled o' Event Interrup highest priority abled o' vent Interrupt	t Priority bits / interrupt) Priority bits			
bit 6-4 bit 3	• • • • • • • • • • • • • •	pt is Priority 1 pt source is dis ted: Read as ' : Master I2C1 pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' : Slave I2C1 E pt is Priority 7 (abled o' Event Interrup highest priority abled o' vent Interrupt	t Priority bits / interrupt) Priority bits			

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

8.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- · Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The primary oscillator and FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

8.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 24.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits. FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, shown in Table 8-1.

8.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
(Reserved)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

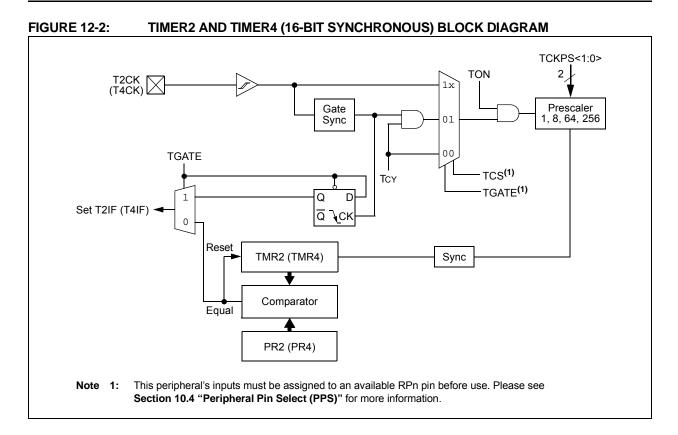
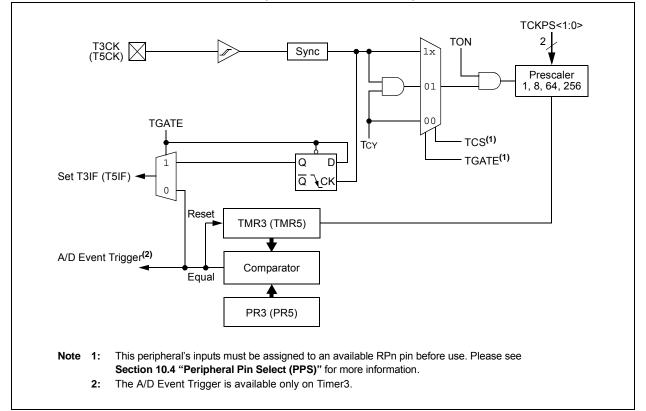



FIGURE 12-3: TIMER3 AND TIMER5 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM

14.3 Pulse-Width Modulation Mode

Note:	This peripheral contains input and output									
	functions that may need to be configured									
	by the Peripheral Pin Select. See									
	Section 10.4 "Peripheral Pin Select									
	(PPS)" for more information.									

The following steps should be taken when configuring the output compare module for PWM operation:

- 1. Set the PWM period by writing to the selected Timery Period register (PRy).
- 2. Set the PWM duty cycle by writing to the OCxRS register.
- 3. Write the OCxR register with the initial duty cycle.
- 4. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Configure the output compare module for one of two PWM Operation modes by writing to the Output Compare Mode bits, OCM<2:0> (OCxCON<2:0>).
- 6. Set the TMRy prescale value and enable the time base by setting TON (TyCON<15>) = 1.
 - Note: The OCxR register should be initialized before the output compare module is first enabled. The OCxR register becomes a read-only Duty Cycle register when the module is operated in the PWM modes. The value held in OCxR will become the PWM duty cycle for the first PWM period. The contents of the Output Compare x Secondary register, OCxRS, will not be transferred into OCxR until a time base period match occurs.

14.3.1 PWM PERIOD

The PWM period is specified by writing to PRy, the Timery Period register. The PWM period can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

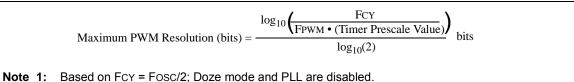
PWM Period = $[(PRy) + 1] \bullet TCY \bullet (Timer Prescale Value)$ Where:

PWM Frequency = 1/[PWM Period]

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7 written into the PRy register will yield a period consisting of 8 time base cycles.

14.3.2 PWM DUTY CYCLE


The PWM duty cycle is specified by writing to the OCxRS register. The OCxRS register can be written to at any time, but the duty cycle value is not latched into OCxR until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation. In the PWM mode, OCxR is a read-only register.

Some important boundary parameters of the PWM duty cycle include:

- If the Output Compare x register, OCxR, is loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxR is greater than PRy (Timery Period register), the pin will remain high (100% duty cycle).
- If OCxR is equal to PRy, the OCx pin will be low for one time base count value and high for all other count values.

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 and 16 MIPS.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"Serial Peripheral Interface (SPI)"* (DS39699)

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the SPI and SIOP Motorola[®] interfaces.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

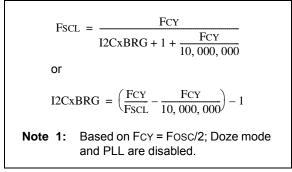
Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Depending on the pin count, PIC24FJ64GA004 family devices offer one or two SPI modules on a single device.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON1 or SPIxCON2 refers to the control register for the SPI1 or SPI2 module. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).
- 5. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPIx module for the Standard Slave mode of operation:


- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit (SPIxCON1<9>).
- 5. If the CKE bit is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK ⁽¹⁾	DISSDO ⁽²⁾	MODE16	SMP	CKE ⁽³⁾
bit 15							bit
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽⁴⁾) CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
			-				-
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	ables SCKx Pi	n bit (SPI Maste	er modes only)	(1)		
			abled; pin funct	ions as I/O			
		SPI clock is en					
bit 11		ables SDOx Pi					
			y the module; p	in functions as	I/O		
bit 10		n is controlled	•	at hit			
		-	unication Seleo				
		ication is byte-	, ,				
bit 9		ata Input Sam					
	Master mode:						
			t end of data ou				
	-	a is sampled a	t middle of data	output time			
	<u>Slave mode:</u>	cleared when	SPIx is used in	Slave mode			
bit 8		lock Edge Sele					
bit 0		•		n from active c	lock state to Idl	e clock state (s	see bit 6)
					ck state to active		
bit 7	SSEN: Slave	Select Enable	bit (Slave mode	∋) ⁽⁴⁾			
		s used for Slav					
	0 = SSx pin i	s not used by	he module; pin	is controlled by	y port function		
bit 6		Polarity Select					
			s a high level; a s a low level; ac				
bit 5		ter Mode Enat	-		lignievei		
DIUD	1 = Master m		ne bit				
	0 = Slave mo						
Note 1:	If DISSCK = 0, So Select (PPS)" for			available RPn	pin. See Sectio	on 10.4 "Perip	heral Pin
2:	If DISSDO = 0, S Select (PPS)" for	DOx must be o	configured to an	available RPn	pin. See Secti	on 10.4 "Perip	oheral Pin
3:	The CKE bit is no SPI modes (FRM	EN = 1).					
4:	If SSEN = 1, SSx (PPS)" for more i		gured to an ava	ilable RPn pin.	See Section 1	0.4 "Peripher	al Pin Selec

16.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 16-1.

EQUATION 16-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 16-1: I²C[™] CLOCK RATES⁽¹⁾

16.4 Slave Address Masking

The I2CxMSK register (Register 16-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses, '00000000' and '00100000'.

To enable address masking, the IPMI (Intelligent Peripheral Management Interface) must be disabled by clearing the IPMIEN bit (I2CxCON<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 16-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required	_	I2CxB	Actual	
System FscL	FCY	(Decimal)	(Hexadecimal)	FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-2: $I^2 C^{TM} RESERVED ADDRESSES^{(1)}$

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	Cbus Address
0000 010	x	Reserved
0000 011	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 1xx	x	Reserved
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

2: The address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt 2 cycles after being set).
- 4. Write data byte to lower byte of UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt 2 cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISEL<1:0>.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. With UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

VCFG2 VCFG1 VCFG0 — — CSCNA — _ bit 8 bit 8 Dit 9 Dit 9 <thdit 9<="" th=""> <thdit 9<="" th=""> <thdit 9<="" t<="" th=""><th>R/W-0</th><th>R/W-0</th><th>R/W-0</th><th>U-0</th><th>U-0</th><th>R/W-0</th><th>U-0</th><th>U-0</th></thdit></thdit></thdit>	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	U-0
bit 15 bit 8	VCFG2	VCFG1	VCFG0	—	—	CSCNA	-	—
	bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVDD*	AVss*
001	External VREF+ Pin	AVss*
010	AVDD*	External VREF- Pin
011	External VREF+ Pin	External VREF- Pin
lxx	AVDD*	AVss*

* AVDD and AVss inputs are tied to VDD and Vss on 28-pin devices.

bit 12-11 Unimplemented: Read as '0'

	•
bit 10	CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit
	1 = Scans inputs
	0 = Does not scan inputs
bit 9-8	Unimplemented: Read as '0'
bit 7	BUFS: Buffer Fill Status bit (valid only when BUFM = 1)
	 1 = A/D is currently filling Buffer 08-0F, user should access data in 00-07 0 = A/D is currently filling Buffer 00-07, user should access data in 08-0F
bit 6	Unimplemented: Read as '0'
bit 5-2	SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
	1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
	1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
	0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
	0000 = Interrupts at the completion of conversion for each sample/convert sequence
bit 1	BUFM: Buffer Mode Select bit
	1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
	0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A
	input multiplexer settings for all subsequent samples
	0 = Always uses MUX A input multiplexer settings

REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0

Legend:				
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR '1' = Bit is		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	ADRC: A	D Conversion Clock Source	e bit	

DIL 15	ADRU: A/D Conversion Clock Source bit
	1 = A/D internal RC clock
	0 = Clock derived from system clock
bit 14-13	Unimplemented: Read as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time bits
	11111 = 31 T AD
	• • • • •
	00001 = 1 TAD
	00000 = 0 TAD (not recommended)
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111
	····· = Reserved
	0100000
	00111111 = 64 • T CY
	•••••
	00000001 = 2 • TCY
	00000000 = TCY

NOTES:

TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
Operat	ing Volta	ge					
DC10	Supply \	/oltage					
	Vdd		VBORMIN	_	3.6	V	Regulator enabled
	Vdd		VDDCORE		3.6	V	Regulator disabled
	VDDCORE		2.0		2.75	V	Regulator disabled
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—	—	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms
DC18	VBOR	Brown-out Reset Voltage	1.8	2.1	2.2	V	

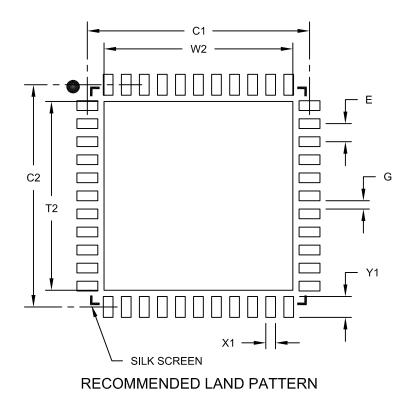
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

DC CHARACTE	RISTICS		Standard Ope Operating tem		2 .0V to 3.6V (unless o 40°C ≤ TA ≤ +85°C foi 40°C ≤ TA ≤ +125°C foi	r Industrial	
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions			
Operating Curre	ent (IDD): PMI	D Bits are S	et ⁽²⁾	•			
DC20	0.650	0.850	mA	-40°C			
DC20a	0.650	0.850	mA	+25°C	2.0∨ ⁽³⁾		
DC20b	0.650	0.850	mA	+85°C	2.000		
DC20c	0.650	0.850	mA	+125°C			
DC20d	1.2	1.6	mA	-40°C		1 MIPS	
DC20e	1.2	1.6	mA	+25°C	3.3∨ (4)		
DC20f	1.2	1.6	mA	+85°C	3.3007		
DC20g	1.2	1.6	mA	+125°C			
DC23	2.6	3.4	mA	-40°C			
DC23a	2.6	3.4	mA	+25°C	2.0V ⁽³⁾		
DC23b	2.6	3.4	mA	+85°C	2.00(*)		
DC23c	2.6	3.4	mA	+125°C			
DC23d	4.1	5.4	mA	-40°C		4 MIPS	
DC23e	4.1	5.4	mA	+25°C	3.3∨ (4)		
DC23f	4.1	5.4	mA	+85°C			
DC23g	4.1	5.4	mA	+125°C			
DC24	13.5	17.6	mA	-40°C			
DC24a	13.5	17.6	mA	+25°C	- 		
DC24b	13.5	17.6	mA	+85°C	2.5V ⁽³⁾		
DC24c	13.5	17.6	mA	+125°C		40 14/100	
DC24d	15	20	mA	-40°C		16 MIPS	
DC24e	15	20	mA	+25°C	3.3√(4)		
DC24f	15	20	mA	+85°C	3.3007		
DC24g	15	20	mA	+125°C			
DC31	13	17	μA	-40°C			
DC31a	13	17	μA	+25°C	2.0∨ ⁽³⁾		
DC31b	20	26	μA	+85°C	2.000		
DC31c	40	50	μA	+125°C			
DC31d	54	70	μA	-40°C		LPRC (31 kHz)	
DC31e	54	70	μA	+25°C	a a (4)		
DC31f	95	124	μA	+85°C	- 3.3√ ⁽⁴⁾		
DC31g	120	260	μA	+125°C			

TABLE 27-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail-to-rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S	
Dimensior	Limits	MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

NOTES:

INDEX

Α	
A/D Converter	
Analog Input Model	
Transfer Function	
AC Characteristics	
A/D Conversion Requirements	
A/D Specifications	
CLKO and I/O Requirements	
External Clock Requirements	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
PLL Clock Specifications	
Temperature and Voltage Specifications	
Additional Guidance for Family Applications	
Assembler	
MPASM Assembler	

В

Block Diagrams	
10-Bit High-Speed A/D Converter	4
16-Bit Timer1 125	5
Accessing Program Memory with	
Table Instructions45	5
Addressable Parallel Slave Port Example 174	4
Addressing for Table Registers47	7
CALL Stack Frame43	3
Comparator I/O Operating Modes203	3
Comparator Voltage Reference 207	7
CPU Programmer's Model25	
CRC Module189	
CRC Shift Engine190	С
Data Access from Program Space	
Address Generation44	
I ² C Module 152	2
Input Capture x133	
LCD Control Example, Byte Mode 176	
Legacy Parallel Slave Port Example174	
Load Conditions for Timing Specifications244	
MCLR Pin Connections18	
On-Chip Regulator Connections 215	
Output Compare x138	3
Parallel EEPROM (Up to 11-Bit Address,	
16-Bit Data)176	3
Parallel EEPROM (Up to 11-Bit Address,	
8-Bit Data)176	
Parallel Master Port (PMP) Module Overview	
PIC24F CPU Core	
PIC24FJ64GA004 Family (General)10)
PMP 8-Bit Multiplexed Addressing and	_
Data Application176	
PMP Master Mode, Demultiplexed Addressing 174	1
PMP Master Mode, Fully	_
Multiplexed Addressing	С
PMP Master Mode, Partially	_
Multiplexed Addressing	
PMP Multiplexed Addressing Application	C
PMP Partially Multiplexed	_
Addressing Application	
PSV Operation	
Real-Time Clock and Calendar (RTCC) 177	ſ

Recommended Minimum Connections	17
Reset System	53
Shared I/O Port Structure	105
Simplified UARTx Module	159
SPIx Master/Frame Master Connection	149
SPIx Master/Frame Slave Connection	149
SPIx Master/Slave Connection	
(Enhanced Buffer Mode)	148
SPIx Master/Slave Connection	
(Standard Mode)	148
SPIx Module (Enhanced Mode)	143
SPIx Module (Standard Mode)	142
SPIx Slave/Frame Master Connection	149
SPIx Slave/Frame Slave Connection	149
Suggested Placement of Oscillator Circuit	21
System Clock	95
Timer2 and Timer4 (16-Bit Synchronous Mode)	129
Timer2/3 and Timer4/5 (32-Bit Mode)	128
Timer3 and Timer5 (16-Bit Synchronous Mode)	129
Watchdog Timer (WDT)	217

С

C Compilers	
MPLAB C18	220
Code Examples	
Basic Clock Switching Example	101
Configuring UART1 Input and Output	
Functions (PPS)	110
Erasing a Program Memory Block	50
I/O Port Read/Write	106
Initiating a Programming Sequence	51
Loading the Write Buffers	
Setting the RTCWREN Bit	178
Single-Word Flash Programming	52
Code Protection	218
Comparator Voltage Reference	
Configuring	207
Configuration Bits	209
Core Features	7
CPU	
Arithmetic Logic Unit (ALU)	27
Control Registers	26
Core Registers	25
Programmer's Model	23
CRC	
Operation in Power Save Modes	190
Setup Example	189
User Interface	190
Customer Change Notification Service	273
Customer Notification Service	273
Customer Support	273
р	

D	
Data Memory	
Address Space	31
Memory Map	31
Near Data Space	32
Organization	32
SFR Space	32
Software Stack	43