

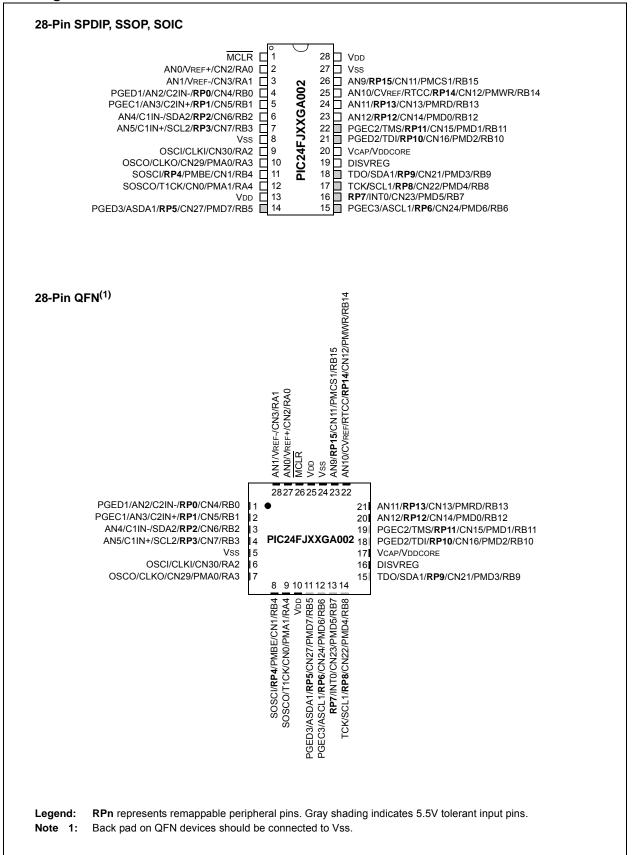
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga004-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE I-I. DEVICE FEATURE			.41 0040					1
Features	16GA002	32GA002	48GA002	64GA002	16GA004	32GA004	48GA004	64GA004
Operating Frequency		•	•	DC – 3	2 MHz		•	
Program Memory (bytes)	16K	32K	48K	64K	16K	32K	48K	64K
Program Memory (instructions)	5,504	11,008	16,512	22,016	5,504	11,008	16,512	22,016
Data Memory (bytes)	4096		8192		4096		8192	
Interrupt Sources (soft vectors/NMI traps)				4 (39		•		
I/O Ports		Ports	; А, В			Ports /	A, B, C	
Total I/O Pins		2	1			3	5	
Timers:								
Total Number (16-bit)				5(1)			
32-Bit (from paired 16-bit timers)				2				
Input Capture Channels				5(1)			
Output Compare/PWM Channels				5(1)			
Input Change Notification Interrupt		2	1		30			
Serial Communications:								
UART				2(1)			
SPI (3-wire/4-wire)	2 ⁽¹⁾							
I ² C™	2							
Parallel Communications (PMP/PSP)				Ye	es			
JTAG Boundary Scan				Ye	es			
10-Bit Analog-to-Digital Module (input channels)		10			13			
Analog Comparators	2							
Remappable Pins		1	6			2	6	
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)							
Instruction Set		76 Base I	nstruction	s, Multiple	Address	ing Mode	Variations	
Packages	28-Pin	SPDIP/S	SOP/SOI	C/QFN		44-Pin Q	FN/TQFP	

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GA004 FAMILY

Note 1: Peripherals are accessible through remappable pins.

TABLE 1-2: PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

	I	Pin Number						
Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description		
T1CK	12	9	34	Ι	ST	Timer1 Clock.		
TCK	17	14	13	-	ST	JTAG Test Clock Input.		
TDI	21	18	35	-	ST	JTAG Test Data Input.		
TDO	18	15	32	0	_	JTAG Test Data Output.		
TMS	22	19	12	-	ST	JTAG Test Mode Select Input.		
Vdd	13, 28	10, 25	28, 40	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins.		
VDDCAP	20	17	7	Р	_	External Filter Capacitor Connection (regulator enabled).		
VDDCORE	20	17	7	Р	—	Positive Supply for Microcontroller Core Logic (regulator disabled).		
VREF-	3	28	20	-	ANA	A/D and Comparator Reference Voltage (low) Input.		
VREF+	2	27	19	I	ANA	A/D and Comparator Reference Voltage (high) Input.		
Vss	8, 27	5, 24	29, 39	Р	—	Ground Reference for Logic and I/O Pins.		
Legend:	TTL = TTL inp	TL input buffer ST = Schmitt Trigger input buffer						

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffe $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
—	_	_	—	_		_	DC					
bit 15							bit 8					
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С					
bit 7							bit (
Legend:												
R = Readat	ole bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown					
bit 15-9	-	ted: Read as '0										
bit 8		f Carry/Borrow I										
			low-order bit (for byte-sized da	ata) or 8th low-	order bit (for we	ord-sized data					
		of the result occurred 0 = No carry-out from the 4th or 8th low-order bit of the result has occurred										
bit 7-5	IPL<2:0>: CF	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)										
		111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled										
		110 = CPU Interrupt Priority Level is 6 (14)										
	101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12)											
	100 = CPU Interrupt Priority Level is 3 (12) 011 = CPU Interrupt Priority Level is 3 (11)											
	010 = CPU Interrupt Priority Level is 2 (10)											
		nterrupt Priority nterrupt Priority										
bit 4		Loop Active bit										
		= REPEAT LOOP IN progress										
	0 = REPEAT loop not in progress											
bit 3	N: ALU Nega	itive bit										
	1 = Result wa		, .	<i></i> 、								
1.11.0		as non-negative	(zero or posi	tive)								
bit 2		OV: ALU Overflow bit										
		 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred 										
bit 1	Z: ALU Zero	ALU Zero bit										
	 1 = An operation which effects the Z bit has set it at some time in the past 0 = The most recent operation which effects the Z bit has cleared it (i.e., a non-zero result) 						sult)					
bit 0	C: ALU Carry	//Borrow bit										
		 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred 										
Note 1: 7	The IPL Status bi	its are read-only	when NSTD	IS (INTCON1<1	5>) = 1.							
	The IPL Status bi	-				n the CPU Inte	errupt Priority					
1	aval (IDL) Thay	value in parenth	oooo indiaata	a tha IDI when			-					

2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

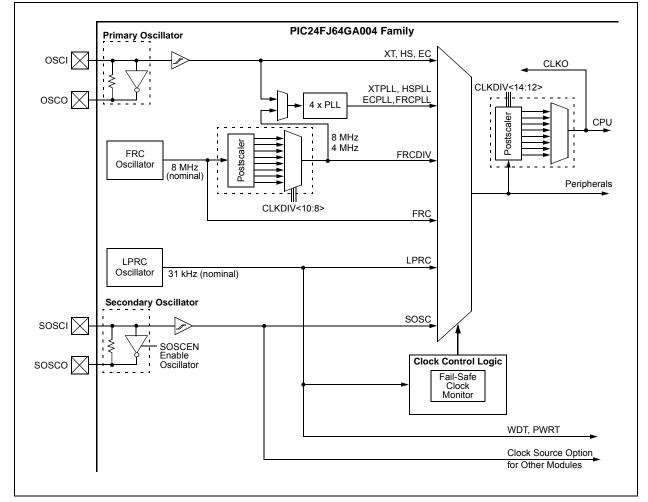
REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	—		—	—		LVDIF	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
		—		CRCIF	U2ERIF	U1ERIF		
bit 7							bit C	
Legend:								
R = Readal	ble bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15-9 bit 8	LVDIF: Low-V 1 = Interrupt i 0 = Interrupt i	Unimplemented: Read as '0' LVDIF: Low-Voltage Detect Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred						
bit 7-4	Unimplemen	ted: Read as '0	3					
bit 3	1 = Interrupt i	CRCIF: CRC Generator Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred						
bit 2	U2ERIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred							
bit 1	1 = Interrupt	RT1 Error Interru request has occ request has not	urred	ıs bit				
bit 0	Unimplemen	ted: Read as '0	,					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	_	_			_					
oit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0				
oit 7							bit 0				
_egend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown					
		(ada Daadaa (o.'								
bit 15-7	•	ted: Read as '									
bit 6-4		SPI2 Event In									
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interru										
	000 = Interru	ot source is dis	abled								
bit 3	Unimplemen	Unimplemented: Read as '0'									
bit 2-0 SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits											
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interru	ot is Priority 1									

REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

8.0 OSCILLATOR CONFIGURATION


Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	"Oscillator" (DS39700).

The oscillator system for PIC24FJ64GA004 family devices has the following features:

- A total of four external and internal oscillator options as clock sources, providing 11 different clock modes
- On-chip 4x PLL to boost internal operating frequency on select internal and external oscillator sources

- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: PIC24FJ64GA004 FAMILY CLOCK DIAGRAM

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.2 Configuring Analog Port Pins

The use of the AD1PCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

10.2.2 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins are always to be avoided. Table 10-1 summarizes the input capabilities. Refer to **Section 27.1 "DC Characteristics"** for more details.

TABLE 10-1: INPUT VOLTAGE LEVELS

Port or Pin	Tolerated Input	Description
PORTA<4:0>	Vdd	Only VDD input levels
PORTB<15:12>		are tolerated.
PORTB<4:0>		
PORTC<2:0>(1)		
PORTA<10:7>(1)	5.5V	Tolerates input levels
PORTB<11:5>		above VDD, useful for
PORTC<9:3>(1)		most standard logic.

Note 1: Unavailable on 28-pin devices.

10.3 Input Change Notification

The Input Change Notification function of the I/O ports allows the PIC24FJ64GA004 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 22 external signals that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin, and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

When the internal pull-up is selected, the pin pulls up to VDD - 0.7V (typical). Make sure that there is no external pull-up source when the internal pull-ups are enabled, as the voltage difference can cause a current path.

Note: Pull-ups on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 10-1:	PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"Serial Peripheral Interface (SPI)"* (DS39699)

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the SPI and SIOP Motorola[®] interfaces.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note: Do not perform read-modify-write operations (such as bit-oriented instructions) on the SPIxBUF register in either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 15-1 and Figure 15-2.

Depending on the pin count, PIC24FJ64GA004 family devices offer one or two SPI modules on a single device.

Note: In this section, the SPI modules are referred to together as SPIx or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON1 or SPIxCON2 refers to the control register for the SPI1 or SPI2 module. To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).
- 5. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFSx register.
 - b) Set the SPIxIE bit in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with the MSTEN bit (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit (SPIxCON1<9>).
- 5. If the CKE bit is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Enable SPIx operation by setting the SPIEN bit (SPIxSTAT<15>).

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC	
ACKSTAT ⁽	¹⁾ TRSTAT	—	—	—	BCL	GCSTAT	ADD10	
bit 15							bit 8	
R/C-0, HS	8 R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	
bit 7			1			•	bit 0	
Legend:		C = Clearabl	e bit	HS = Hardware	e Settable bit			
R = Readal	ole bit	W = Writable	bit	U = Unimpleme	ented bit, read a	s '0'		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clear	red	x = Bit is unkr	nown	
HSC = Har	dware Settable/C	learable bit						
bit 15	ACKSTAT: Ad	cknowledge St	atus bit ⁽¹⁾					
		s detected las						
	0 = ACK was							
	Hardware is s			-				
bit 14				ting as l ² C™ ma	ister, applicable	to master trans	smit operation)	
		ansmit is in pro	U	+ ACK)				
		0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge						
bit 13-11		Unimplemented: Read as '0'						
bit 10	BCL: Master							
				ing a master op	eration			
	0 = No collisio	on						
	Hardware is s	et at the dete	ction of bus co	ollision.				
bit 9	GCSTAT: Ger							
		all address wa		4				
		all address wa et when an ad		u s the general call	address. Hardw	vare is clear at s	Stop detection.	
bit 8	ADD10: 10-B			stre general eau				
		lress was mat						
		lress was not						
	Hardware is se	et at the match	of the 2nd byte	e of matched 10-b	oit address. Hard	ware is clear at	Stop detection.	
bit 7	IWCOL: I2Cx Write Collision Detect bit							
	1 = An attempt to write to the I2CxTRN register failed because the I ² C module is busy							
	0 = No collisio Hardware is s		rrence of a wr	ite to I2CxTRN	while busy (clea	red by software	e)	
bit 6	12COV: 12Cx 1					. ca sy convar		
211.0			-	CV register is sti	Il holdina the pro	evious bvte		
	0 = No overflo				3 P.			
	Hardware is s	et at an attem	pt to transfer	2CxRSR to 12C	xRCV (cleared	by software).		
Note 1:	n both Master an	d Slave mode	s, the ACKST	AT bit is only up	dated when tran	ismitting data r	esultina in the	
r	reception of an A data, either as a s	CK or NACK f	rom another d	evice. Do not ch	neck the state of	ACKSTAT who	en receiving	

REGISTER 17-2:	UxSTA: UARTx STATUS AND CONTROL REGISTER
----------------	--

REGISTER 1	17-2: UxST	A: UARTx ST	ATUS AND	CONTROL R	EGISTER		
R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15		· · · · · · · · · · · · · · · · · · ·					bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
	-						
URXISEL1 bit 7	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	t	
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15,13	11 = Reserve 10 = Interrupt transmit 01 = Interrupt operation 00 = Interrupt	d; do not use when a charac buffer becomes when the las ns are complete	ter is transferi s empty t character is ed ter is transferr	rrupt Mode Sele red to the Trans s shifted out o ed to the Transr iffer)	mit Shift Regis	Shift Registe	er; all transmi
bit 14	UTXINV: IrDA <u>If IREN = 0:</u> 1 = UxTX Idle 0 = UxTX Idle <u>If IREN = 1:</u> 1 = UxTX Idle 0 = UxTX Idle	state is '1' state is '1'	ismit Polarity	Inversion bit			
bit 12		ted: Read as '0	,				
bit 11	-	RTx Transmit E					
bit 10	cleared b 0 = Sync Brea UTXEN: UAR	y hardware upo ak transmissior Tx Transmit En	on completion i is disabled o able bit ⁽¹⁾	·		e '0' bits, follow	ved by Stop bit
	0 = Transmit			olled by UART mission is abor		s reset; UxTX p	oin is controlled
bit 9	1 = Transmit	buffer is full		s bit (read-only) more character			
bit 8	1 = Transmit		empty and tra	ead-only) ansmit buffer is transmission is			nas completed
bit 7-6	URXISEL<1:0)>: UARTx Rec	eive Interrupt	Mode Selection	n bits		
	10 = Interrup 0x = Interrup	ot is set on RSR	transfer, mak y character is	ting the receive ting the receive received and tra acters	buffer 3/4 full (i.e., has 3 data	a characters)

Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0
bit 15	1						bit 8
						D 444 A	5444.6
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB1 ⁽¹⁾	WAITB0 ⁽¹⁾	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1 ⁽¹⁾	WAITE0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	BUSY: Busy b	bit (Master mod	de only)				
	1 = Port is bu	usy (not useful	when the proce	essor stall is ac	tive)		
	0 = Port is no	ot busy					
bit 14-13	IRQM<1:0>:	Interrupt Reque	est Mode bits				
						written (Buffer	
						PSP mode onl	у)
			ed, processor s at the end of the				
		rupt is generate					
bit 12-11		ncrement Mod					
	11 = PSP rea	id and write bu	ffers auto-incre	ment (Legacy	PSP mode only	/)	
			0:0> by 1 every				
			0> by 1 every r	•	9		
hit 10			ment of addres	S			
bit 10		6-Bit Mode bit	taria 10 hita a	read envirite to	the Deterratio		
						ter invokes two er invokes one 8	
bit 9-8		-	lode Select bits		ne Bata regiote		
bit 0 0					MRE PMA <x.< td=""><td>)> and PMD<7:</td><td>·0>)</td></x.<>)> and PMD<7:	·0>)
					A <x:0> and P</x:0>		.0-)
	01 = Enhance	ed PSP, contro	l signals (PMR	D, PMWR, PM	CS1, PMD<7:0	> and PMA<1:0	
	• •		-			1 and PMD<7:0)>)
bit 7-6	WAITB<1:0>:	: Data Setup to	Read/Write W	ait State Config	guration bits ⁽¹⁾		
			tiplexed addres	•			
			Itiplexed addres				
			Itiplexed addres				
bit 5-2			Enable Strobe	-			
511 0 2		of additional 15		Walt Clate Col	ingulation bito		
		of additional 1					
		-	cles (operatior/				
					- 4 ¹ (1)		
bit 1-0	WAITE<1:0>:		er Strobe Wait	State Configura	ation dits."		
bit 1-0	11 = Wait of	4 Tcy	er Strobe Wait	State Configura	ation dits"		
bit 1-0		4 Тсү 3 Тсү	er Strobe Walt	State Configura	ation dits."		

REGISTER 18-2: PMMODE: PARALLEL PORT MODE REGISTER

Note 1: WAITBx and WAITEx bits are ignored whenever WAITM<3:0> = 0000.

20.3 Registers

There are four registers used to control programmable CRC operation:

- CRCCON
- CRCXOR
- CRCDAT
- CRCWDAT

REGISTER 20-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
—	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-8	VWORD<4:0>: Pointer Value bits
	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7 or 16 when PLEN<3:0> \leq 7.
bit 7	CRCFUL: CRC FIFO Full bit
	1 = FIFO is full 0 = FIFO is not full
bit 6	CRCMPT: CRC FIFO Empty Bit
	1 = FIFO is empty
	0 = FIFO is not empty
bit 5	Unimplemented: Read as '0'
bit 4	CRCGO: CRC Start bit
	 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off
bit 3-0	PLEN<3:0>: Polynomial Length bits
	Denotes the length of the polynomial to be generated minus 1.

NOTES:

REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 **WDTPS<3:0>:** Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 **= 1:2,048** 1010 = 1:1,024 1001 **= 1:512** 1000 **= 1:256** 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit4,Wnd	Wnd = Logical Right Shift Wb by lit4	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	None
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	None
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Wis, Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
MOL	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU		{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
		Wb,#lit5,Wnd	W3:W2 = f * WREG	1	1	None
	MUL	f	$f = \overline{f} + 1$			
NEG	NEG	f	_	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 27-16: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)

AC CHARACTERISTICS				Operating temperatu		-40°C :	0.3.6V (unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for Industrial $\leq TA \leq +125^{\circ}C$ for Extended
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
OS50	Fplli	PLL Input Frequency Range	3 3	_	8 6	MHz MHz	ECPLL, HSPLL, XTPLL modes, -40°C \leq TA \leq +85°C ECPLL, HSPLL, XTPLL modes, -40°C \leq TA \leq +125°C
OS51	Fsys	PLL Output Frequency Range	8 8	_	32 24	MHz MHz	$\begin{array}{l} -40^\circ C \leq TA \leq +85^\circ C \\ -40^\circ C \leq TA \leq +125^\circ C \end{array}$
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	_	2	ms	
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period

Note 1: These parameters are characterized but not tested in manufacturing.

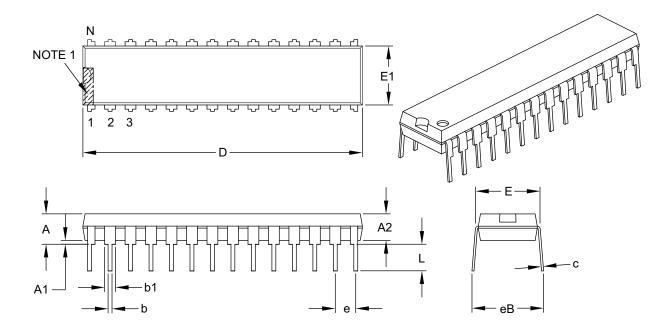
2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-17: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CH	ARACTI	ERISTICS		Operating temperatu		-40°C ≤ 7	5.6V (unless otherwise stated) TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Sym	Characteristic	Min Typ Max Units Condition			Conditions	
	TFRC	FRC Start-up Time	_	15	_	μS	
	TLPRC	LPRC Start-up Time	_	40	—	μS	

TABLE 27-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS		d Operat ng temper	-		2.0V to 3.6V (unless of 40°C \leq TA \leq +85°C for Ir 40°C \leq TA \leq +125°C for or	ndustrial	
Param No.	Characteristic	Min Typ Max Units Conditions					tions	
F20	Internal FRC @ 8 MHz ⁽¹⁾	-2	_	2	%	+25°C		
		-5	—	5	%	$-40^\circ C \le T A \le +85^\circ C$	$3.0V \leq V\text{DD} \leq 3.6V$	
		-7		7	%	+125°C		
F21	LPRC @ 31 kHz ⁽²⁾	-15	_	15	%	+25°C		
		-15		15	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad 3.0V \le VDD \le 3.6V$		
		-30		30	%	+125°C		


Note 1: Frequency calibrated at +25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.
 2: Change of LPRC frequency as VDD changes.

28.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	e		.100 BSC			
Top to Seating Plane	A	-	-	.200		
Molded Package Thickness	A2	.120	.135	.150		
Base to Seating Plane	A1	.015	-	_		
Shoulder to Shoulder Width	E	.290	.310	.335		
Molded Package Width	E1	.240	.285	.295		
Overall Length	D	1.345	1.365	1.400		
Tip to Seating Plane	L	.110	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.050	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	_	-	.430		

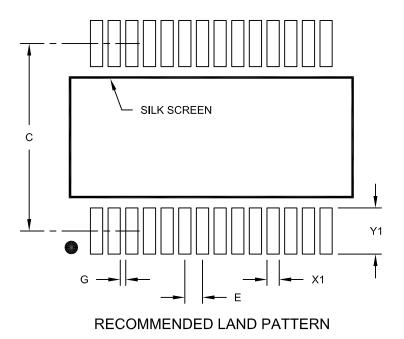
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

© 2010-2013 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

NOTES: