

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga004-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Features	16GA002	32GA002	48GA002	64GA002	16GA004	32GA004	48GA004	64GA004		
Operating Frequency				DC – 3	82 MHz					
Program Memory (bytes)	16K	32K	48K	64K	16K	32K	48K	64K		
Program Memory (instructions)	5,504	11,008	16,512	22,016	5,504	11,008	16,512	22,016		
Data Memory (bytes)	4096		8192		4096		8192			
Interrupt Sources (soft vectors/NMI traps)				4 (39	3 9/4)					
I/O Ports	orts Ports A					Ports /	A, B, C			
Total I/O Pins		2	!1			3	5			
Timers:										
Total Number (16-bit)				5	(1)					
32-Bit (from paired 16-bit timers)					2					
Input Capture Channels	5 ⁽¹⁾									
Output Compare/PWM Channels				5	(1)					
Input Change Notification Interrupt		2	21			3	0			
Serial Communications:										
UART				2	(1)					
SPI (3-wire/4-wire)				2	(1)					
I ² C™				2	2					
Parallel Communications (PMP/PSP)				Ye	es					
JTAG Boundary Scan				Ye	es					
10-Bit Analog-to-Digital Module (input channels)		1	0			1	3			
Analog Comparators					2					
Remappable Pins		1	6			2	26			
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)									
Instruction Set	76 Base Instructions, Multiple Addressing Mode Variations									
Packages 28-Pin SPDIP/SSOP/SOIC/QFN 44-Pin QFN/TQFP										

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GA004 FAMILY

Note 1: Peripherals are accessible through remappable pins.

Function	28-Pin SPDIP/ SSOP/SOIC	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
AN0	2	27	19	I	ANA	A/D Analog Inputs.
AN1	3	28	20	I	ANA	
AN2	4	1	21	I	ANA	
AN3	5	2	22	I	ANA	
AN4	6	3	23	I	ANA	
AN5	7	4	24	I	ANA	
AN6	—	_	25	I	ANA	
AN7	—	_	26	I	ANA	
AN8	—	_	27	I	ANA	
AN9	26	23	15	I	ANA	
AN10	25	22	14	I	ANA	
AN11	24	21	11	I	ANA	
AN12	23	20	10	I	ANA	
ASCL1	15	12	42	I/O	l ² C	Alternate I2C1 Synchronous Serial Clock Input/Output. ⁽¹⁾
ASDA1	14	11	41	I/O	I ² C	Alternate I2C2 Synchronous Serial Clock Input/Output. (1)
AVDD	—	_	17	Р		Positive Supply for Analog Modules.
AVss	—	_	16	Р	_	Ground Reference for Analog Modules.
C1IN-	6	3	23	I	ANA	Comparator 1 Negative Input.
C1IN+	7	4	24	I	ANA	Comparator 1 Positive Input.
C2IN-	4	1	21	I	ANA	Comparator 2 Negative Input.
C2IN+	5	2	22	I	ANA	Comparator 2 Positive Input.
CLKI	9	6	30	Ι	ANA	Main Clock Input Connection.
CLKO	10	7	31	0	—	System Clock Output.

Legend: TTL = TTL input buffer

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

					01110													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	-	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0		-	_	—	_		_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	—	_	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	001F
RPINR3	0686	_	—	_	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	_	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	1F1F
RPINR4	0688		—	_	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0		_	_	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	1F1F
RPINR7	068E		_	_	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0		_	_	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	1F1F
RPINR8	0690		—	_	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0		_	_	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	1F1F
RPINR9	0692		_	_	_	_	_	_	_		_	_	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	001F
RPINR11	0696		_	_	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0		_	_	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	1F1F
RPINR18	06A4		_	_	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0		_	_	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	1F1F
RPINR19	06A6		_	_	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0		_	_	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	1F1F
RPINR20	06A8		_	_	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0		_	_	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	1F1F
RPINR21	06AA		—	—	_	_	_	—	—		_	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	001F
RPINR22	06AC	_	—	—	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	-	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	1F1F
RPINR23	06AE	_	—	—	_	—	—	—	—	-	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	001F
RPOR0	06C0	_	—	—	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	-	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	-	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	-	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	—	—	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	-	—	—	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	—	—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	-	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	—	—	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	—	—		RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	—	—	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	—		RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	—	—	RP17R4 ⁽¹⁾	RP17R3 ⁽¹⁾	RP17R2 ⁽¹⁾	RP17R1 ⁽¹⁾	RP17R0 ⁽¹⁾	_	—		RP16R4 ⁽¹⁾	RP16R3 ⁽¹⁾	RP16R2 ⁽¹⁾	RP16R1 ⁽¹⁾	RP16R0 ⁽¹⁾	0000
RPOR9	06D2	—	—	—	RP19R4 ⁽¹⁾	RP19R3 ⁽¹⁾	RP19R2 ⁽¹⁾	RP19R1 ⁽¹⁾	RP19R0 ⁽¹⁾	_	—	_	RP18R4 ⁽¹⁾	RP18R3 ⁽¹⁾	RP18R2 ⁽¹⁾	RP18R1 ⁽¹⁾	RP18R0 ⁽¹⁾	0000
RPOR10	06D4	—	—	—	RP21R4 ⁽¹⁾	RP21R3 ⁽¹⁾	RP21R2 ⁽¹⁾	RP21R1 ⁽¹⁾	RP21R0 ⁽¹⁾	_	—	_	RP20R4 ⁽¹⁾	RP20R3 ⁽¹⁾	RP20R2 ⁽¹⁾	RP20R1 ⁽¹⁾	RP20R0 ⁽¹⁾	0000
RPOR11	06D6	—	—	—	RP23R4 ⁽¹⁾	RP23R3 ⁽¹⁾	RP23R2 ⁽¹⁾	RP23R1 ⁽¹⁾	RP23R0 ⁽¹⁾	_	—	_	RP22R4 ⁽¹⁾	RP22R3 ⁽¹⁾	RP22R2 ⁽¹⁾	RP22R1 ⁽¹⁾	RP22R0 ⁽¹⁾	0000
RPOR12	06D8	_	_	_	RP25R4 ⁽¹⁾	RP25R3 ⁽¹⁾	RP25R2 ⁽¹⁾	RP25R1(1)	RP25R0 ⁽¹⁾	_	_	_	RP24R4 ⁽¹⁾	RP24R3 ⁽¹⁾	RP24R2 ⁽¹⁾	RP24R1 ⁽¹⁾	RP24R0 ⁽¹⁾	0000

TABLE 4-21: PERIPHERAL PIN SELECT REGISTER MAP (PPS)

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 These bits are only available on 44-pin devices; otherwise, they read as '0'.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	_	_	-	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	SOSCEN	OSWEN	(Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3140
OSCTUN	0748	_		_		_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on configuration fuses and by the type of Reset.

TABLE 4-23: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_	—	—	—	_	ERASE	—	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	_	_	—	_	_	_	_	_				NVMKE	Y<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for a POR only. The value on other Reset states is dependent on the state of the memory write or erase operations at the time of Reset.

TABLE 4-24: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADC1MD	0000
PMD2	0772	_	_	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCPMD	_	_	_	_	_	I2C2MD	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24FJ64GA004 FAMILY

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

- 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - **2:** The IPLx bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - 3: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	_	—

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

IPL3: CPU Interrupt Priority Level Status bit⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.

2: The IPL3 bit is concatenated with the IPL<2:0: bits (SR<7:5>) to form the CPU Interrupt priority Level.

bit 7

bit 3

bit 0

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '11111' and all RPORx registers reset to '00000', all Peripheral Pin Select inputs are tied to RP31 and all Peripheral Pin Select outputs are disconnected.

Note:	In tying Peripheral Pin Select inputs to						
	RP31, RP31 does not have to exist on a						
	device for the registers to be reset to it.						

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output. The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 10-2 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

EXAMPLE 10-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS

// Unlock Registers __builtin_write_OSCCONL(OSCCON & 0xBF); // Configure Input Functions (Table 10-2)) // Assign UIRX To Pin RP0 RPINR18bits.UIRXR = 0; // Assign UICTS To Pin RP1 RPINR18bits.UICTSR = 1; // Configure Output Functions (Table 10-3) // Assign UITX To Pin RP2 RPOR1bits.RP2R = 3; // Assign UIRTS To Pin RP3 RPOR1bits.RP3R = 4; // Lock Registers __builtin_write_OSCCONL(OSCCON | 0x40);

11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, **"Timers"** (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC), or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-1: SAMPLE SCKx FREQUENCIES^(1,2)

	Secondary Prescaler Settings					
	1:1	2:1	4:1	6:1	8:1	
Primary Prescaler Settings	1:1	Invalid	8000	4000	2667	2000
	4:1	4000	2000	1000	667	500
	16:1	1000	500	250	167	125
	64:1	250	125	63	42	31
Fcy = 5 MHz						
Primary Prescaler Settings	1:1	5000	2500	1250	833	625
	4:1	1250	625	313	208	156
	16:1	313	156	78	52	39
	64:1	78	39	20	13	10

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: SCKx frequencies are shown in kHz.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 5	D/A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	0 = Indicates that the last byte received was a device address
	a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from slave
	0 = Write – Indicates data transfer is input to slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	U = Receive is not complete, I2CXRCV is empty Hardware is set when I2CXRCV is written with received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes I2CxTRN. Hardware is clear at completion of data transmission.

Note 1: In both Master and Slave modes, the ACKSTAT bit is only updated when transmitting data resulting in the reception of an ACK or NACK from another device. Do not check the state of ACKSTAT when receiving data, either as a slave or a master. Reading ACKSTAT after receiving address or data bytes returns an invalid result.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

AMSK<9:0>: Mask for Address Bit x Select bits

- 1 = Enables masking for bit x of incoming message address; bit match is not required in this position
- 0 = Disables masking for bit x; bit match is required in this position

bit 9-0

PIC24FJ64GA004 FAMILY

FIGURE 18-2: LEGACY PARALLEL SLAVE PORT EXAMPLE

FIGURE 18-3: ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE

TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION

PMA<1:0>	Output Register (Buffer)	Input Register (Buffer)
00	PMDOUT1<7:0> (0)	PMDIN1<7:0> (0)
01	PMDOUT1<15:8> (1)	PMDIN1<15:8> (1)
10	PMDOUT2<7:0> (2)	PMDIN2<7:0> (2)
11	PMDOUT2<15:8> (3)	PMDIN2<15:8> (3)

FIGURE 18-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)

PIC24FJ64GA004 FAMILY

FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION

FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 8-BIT DATA)

PIC24F		Parallel EEPROM		
PMA <n:0></n:0>		A <n:0></n:0>		
PMD<7:0>	\longleftrightarrow	D<7:0>		
PMCS1		CE	Address Bus	
			Data Bus	
PINIVR		VVR	Control Lines	

FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 16-BIT DATA)

FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)

R/W-0	U-0	R/C-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON ⁽¹⁾	_	ADSIDL	_	_	_	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HSC	R/W-0, HSC
SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE
bit 7							bit 0
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/C	learable bit	
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
			(1)				
DIT 15	ADON: A/D Conv.	perating Mode					
	1 = A/D Conv 0 = A/D Conv	erter is off	soperating				
bit 14	Unimplement	ted: Read as ')'				
bit 13	ADSIDL: A/D	Stop in Idle Mo	ode bit				
	1 = Discontin	ues module op	eration when d	levice enters Id	le mode		
	0 = Continue	s module opera	ation in Idle mo	de			
bit 12-10	Unimplement	ted: Read as ')'				
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits				
	11 = Signed fi 10 = Fractional	ractional (sadd al (dddd) dddd	1 dddd dd00 1 dd00 0000)	0000)			
	01 = Signed in	nteger (ssss	sssd dddd d	ddd)			
	00 = Integer (0000 00dd d	ddd dddd)				
bit 7-5	SSRC<2:0>:	Conversion Tri	gger Source Se	elect bits		0	
	111 = Internal	l counter ends	sampling and s	starts conversio	on (auto-conve	rt)	
	10x = Reserv	ed					
	011 = Reserv	ed .					
	010 = 1 imer 3	compare ends transition on IN	sampling and	starts conversion	on rts.conversion		
	000 = Clearin	g the SAMP bi	t ends sampling	g and starts co	nversion		
bit 4-3	Unimplement	ted: Read as '	כי				
bit 2	ASAM: A/D S	ample Auto-Sta	art bit				
	1 = Sampling 0 = Sampling	begins immed begins when \$	liately after last SAMP bit is set	conversion co	mpletes; SAMF	P bit is auto-set	
bit 1	SAMP: A/D S	ample Enable	bit				
	1 = A/D Samp 0 = A/D Samp	ble-and-Hold (S ble-and-Hold ar	6/H) amplifier is mplifier is holdi	sampling input	t		
bit 0	DONE: A/D C	onversion Stat	us bit				
	1 = A/D conversion	ersion is done					
	0 = A/D conve	ersion is NOT c	ione				

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: The ADC1BUFn registers do not retain their values when ADON is cleared. Read out any conversion values from the buffer before disabling the module.

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CHONE				CH0SB3 ^(1,2)	CH0SB2 ^(1,2)	CH0SB1 ^(1,2)	CH0SB0 ^(1,2)
bit 15			•				bit 8
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	· —	—		CH0SA3 ^(1,2)	CH0SA2 ^(1,2)	CH0SA1 ^(1,2)	CH0SA0 ^(1,2)
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	CH0NB: Cha	nnel 0 Negative	e Input Select f	or MUX B Multi	plexer Setting	bit	
	1 = Channel () negative inpu	t is AN1				
	0 = Channel () negative inpu	t is VR-				
bit 14-12	Unimplemen	ted: Read as '	0,			(1.2)	
bit 11-8	CH0SB<3:0>	: Channel 0 Pc	sitive Input Se	lect for MUX B	Multiplexer Set	tting bits ^(1,2)	
	1111 = Chan	nel 0 positive ir nol 0 positivo ir	nput is AN15 (t	band gap voltag	e reference)		
	1011 = Chan	nel 0 positive il nel 0 positive ir	iput is AN12				
		·					
	0001 = Chan	nel 0 positive ir	nput is AN1				
h:+ 7		nei u positive ir	iput is ANU		alever Cetting	L:4	
DIL 7			t in AN1		plexer Setting	DIL	
	0 = Channel () negative inpu	t is VR-				
bit 6-4	Unimplemen	ted: Read as '	o'				
bit 3-0	CH0SA<3:0>	: Channel 0 Po	sitive Input Se	lect for MUX A	Multiplexer Set	tting bits ^(1,2)	
	1111 = Chan	nel 0 positive ir	nput is AN15 (t	oand gap voltag	e reference)	•	
	1100 = Chan	nel 0 positive ir	nput is AN12				
	1011 = Chan	nel 0 positive ir	nput is AN11				
	0001 = Chan	nel 0 positive ir	nout is AN1				
	0000 = Chan	nel 0 positive ir	nput is AN0				
Note 1.	Combinations '1	101 ' and ' 1110	' are unimpler	mented: do not			
2:	Analog Channels	. AN6. AN7 and	d AN8. are una	vailable on 28-	pin devices: do	not use.	
		,, .					

REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER

EQUATION 21-1: A/D CONVERSION CLOCK PERIOD⁽¹⁾

$$TAD = TCY \cdot (ADCS + 1)$$

 $ADCS = \frac{TAD}{TCY} - 1$

FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL

PIC24FJ64GA004 FAMILY

25.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions							
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is '0' ⁽²⁾										
DC62	8	16	μΑ	-40°C						
DC62a	12	16	μA	+25°C						
DC62m	12	16	μA	+60°C	2.0V ⁽³⁾					
DC62b	12	16	μA	+85°C						
DC62j	18	23	μA	+125°C						
DC62c	9	16	μA	-40°C						
DC62d	12	16	μA	+25°C		RTCC + Timer1 w/32 kHz Crystal: ΔRTCC, ΔΙτι32 ⁽⁵⁾				
DC62n	12	16	μA	+60°C	2.5V ⁽³⁾					
DC62e	12.5	16	μA	+85°C						
DC62k	20	25	μA	+125°C						
DC62f	10.3	18	μA	-40°C						
DC62g	13.4	18	μA	+25°C						
DC62o	14.0	18	μA	+60°C	3.3∨ (4)					
DC62h	14.2	18	μA	+85°C						
DC62I	23	28	μA	+125°C						
DC63	2	—	μA	-40°C						
DC63a	2	—	μA	+25°C	2.0V ⁽³⁾					
DC63b	6	—	μA	+85°C						
DC63c	2	—	μA	-40°C		RTCC + Timer1 w/Low-Power				
DC63d	2	—	μA	+25°C	2.5∨ ⁽³⁾	32 KHz Crystal (SOCSEL <1:0> = 01): ARTCC				
DC63e	7	—	μA	+85°C		ΔΙΤΙ32 ⁽⁵⁾				
DC63f	2	—	μΑ	-40°C						
DC63g	3		μΑ	+25°C	3.3∨ ⁽⁴⁾					
DC63h	7	_	μA	+85°C						

TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off.

3: On-chip voltage regulator is disabled (DISVREG tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B