
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.0GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, DDR3L, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	HDMI, Keypad, LCD, LVDS, MIPI/DSI, Parallel
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (3), USB 2.0 OTG + PHY (1)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, A-HAB, CAAM, CSU, SJC, SNVS
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6qp6avt1aa

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1 Ordering Information

Table 1 shows examples of orderable part numbers covered by this data sheet. This table does not include all possible orderable part numbers. The latest part numbers are available on freescale.com/imx6series. If your desired part number is not listed in the table, or you have questions about available parts, see freescale.com/imx6series or contact your Freescale representative.

Part Number	Quad/Dual	CPU Options	Speed ¹	Temperature Grade	Package
MCIMX6DP4AVT8AA	i.MX 6DualPlus	no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6DP6AVT8AA	i.MX 6DualPlus	Full Featured Product	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6DP4AVT1AA	i.MX 6DualPlus	no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6DP6AVT1AA	i.MX 6DualPlus	Full Featured Product	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6QP4AVT8AA	i.MX 6QuadPlus	no VPU	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6QP6AVT8AA	i.MX 6QuadPlus	Full Featured Product	852 MHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6QP4AVT1AA	i.MX 6QuadPlus	no VPU	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)
MCIMX6QP6AVT1AA	i.MX 6QuadPlus	Full Featured Product	1 GHz	Automotive	21 mm x 21 mm, 0.8 mm pitch, FCPBGA (lidded)

 Table 1. Example Orderable Part Numbers

¹ If a 24 MHz input clock is used (required for USB), the maximum speed is limited to 996 MHz.

Figure 1 describes the part number nomenclature to identify the characteristics of the specific part number you have (for example, cores, frequency, temperature grade, fuse options, silicon revision). Figure 1 applies to the i.MX 6DualPlus/6QuadPlus.

The two characteristics that identify which data sheet a specific part applies to are the part number series field and the temperature grade (junction) field:

- The i.MX 6DualPlus/6QuadPlus Automotive Applications Processors data sheet (IMX6DQPAEC) covers parts listed for the "Plus" series and with "A" indicating automotive temperature.
- The i.MX 6DualPlus/6QuadPlus Applications Processors for Consumer Products data sheet (IMX6DQPCEC) covers parts listed with "D (Commercial temp)" or "E (Extended Commercial temp)"
- The i.MX 6DualPlus/6QuadPlus Applications Processors for Industrial Products data sheet (IMX6DQPIEC) covers parts listed with "C (Industrial temp)"

Ensure that you have the right data sheet for your specific part by checking the fields: Part # Series (DP/QP), temperature grade (junction) (A), and Frequency (8).

Block Mnemonic	Block Name	Subsystem	Brief Description
GPU2Dv3	Graphics Processing Unit-2D, ver. 3	Multimedia Peripherals	The GPU2Dv3 provides hardware acceleration for 2D graphics algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
GPU3Dv6	Graphics Processing Unit-3D, ver. 6	Multimedia Peripherals	The GPU2Dv6 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 3.0, including extensions, OpenGL ES 2.0, OpenGL ES 1.1, and OpenVG 1.1
GPUVGv2	Vector Graphics Processing Unit, ver. 2	Multimedia Peripherals	OpenVG graphics accelerator provides OpenVG 1.1 support as well as other accelerations, including Real-time hardware curve tesselation of lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and various Vector Drawing functions.
HDMI Tx	HDMI Tx interface	Multimedia Peripherals	The HDMI module provides HDMI standard interface port to an HDMI 1.4 compliant display.
HSI	MIPI HSI interface	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.
l ² C-1 l ² C-2 l ² C-3	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.
IOMUXC	IOMUX Control	System Control Peripherals	This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable.
IPUv3H-1 IPUv3H-2	Image Processing Unit, ver. 3H	Multimedia Peripherals	 IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: Parallel Interfaces for both display and camera Single/dual channel LVDS display interface HDMI transmitter MIPI/DSI transmitter MIPI/CSI-2 receiver The processing includes: Image conversions: resizing, rotation, inversion, and color space conversion A high-quality de-interlacing filter Video/graphics combining Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement Support for display backlight reduction
KPP	Key Pad Port	Connectivity Peripherals	 KPP Supports 8 x 8 external key pad matrix. KPP features are: Open drain design Glitch suppression circuit design Multiple keys detection Standby key press detection

Table 8. Maxim	um Supply Currents	s (continued)
----------------	--------------------	---------------

Dower Comple	Conditions	Maximum C	11		
Power Supply	Conditions	Power Virus	CoreMark	Unit	
NVCC_LVDS2P5	_	NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5.			
	MISC				
DRAM_VREF	—	1		mA	

¹ i.MX 6DualPlus numbers assume VDD_ARM23_IN and VDD_ARM23_CAP are connected to ground.

² The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI, PCIe, and SATA VPH supplies).

³ Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 8. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.

⁴ This is the maximum current per active USB physical interface.

- ⁵ The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators are typically available from memory vendors which take into account factors such as signal termination. See the *i.MX 6Dual/6Quad Power Consumption Measurement Application Note* (AN4509) for examples of DRAM power consumption during specific use case scenarios.
- ⁶ General equation for estimated, maximum power consumption of an IO power supply: Imax = N x C x V x (0.5 x F)

Where:

N—Number of IO pins supplied by the power line

C-Equivalent external capacitive load

V—IO voltage

(0.5 xF)-Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

4.1.6 Low Power Mode Supply Currents

Table 9 shows the current core consumption (not including I/O) of the i.MX 6DualPlus/6QuadPlus processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Unit
WAIT	 WAIT ARM, SoC, and PU LDOs are set to 1.225 V HIGH LDO set to 2.5 V Clocks are gated DDR is in self refresh PLLs are active in bypass (24 MHz) 	VDD_ARM_IN (1.4 V)	6	mA
		VDD_SOC_IN (1.4 V)	23	mA
		VDD_HIGH_IN (3.0 V)	3.7	mA
Supply voltages remain ON	Total	52	mW	

Table 9. Stop Mode Current and Power Consumption

4.4.3 Ethernet PLL

Parameter	Value
Clock output range	500 MHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

Table 16. Ethernet PLL Electrical Parameters

4.4.4 480 MHz PLL

Table 17. 480 MHz PLL Electrical Parameters

Parameter	Value
Clock output range	480 MHz PLL output
Reference clock	24 MHz
Lock time	<383 reference cycles

4.4.5 MLB PLL

The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and external clock edges, effectively tuning out the delay of the differential clock receiver and is also responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is not 1:1.

Table 18. MLB PLL Electrical Parameters

Parameter	Value
Lock time	<1.5 ms

4.4.6 ARM PLL

Table 19. ARM PLL Electrical Parameters

Parameter	Value
Clock output range	650 MHz~1.3 GHz
Reference clock	24 MHz
Lock time	<2250 reference cycles

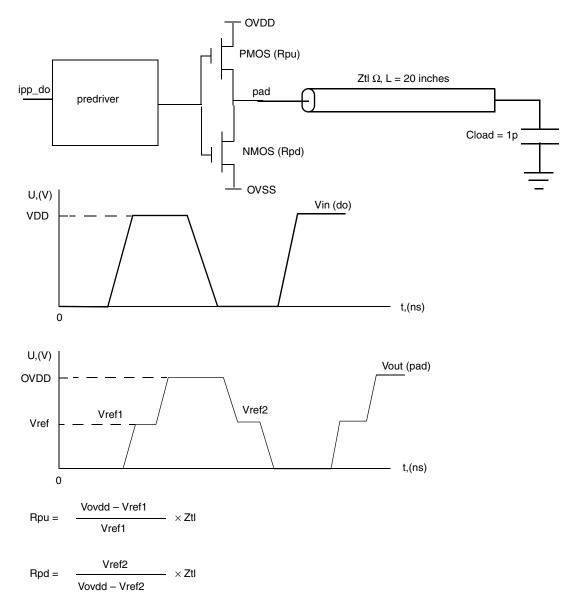


Figure 9. Impedance Matching Load for Measurement

ID	Parameter ^{1,2,3}	Symbol	CK = 400 MHz		Unit
			Min	Max	Unit
LP22	DRAM_SDQSx_P high level width	t DQSH	0.4		tCK
LP23	DRAM_SDQSx_P low level width	tDQSL	0.4	_	tCK

Table 46. LPDDR2 Write Cycle (continued)

¹ To receive the reported setup and hold values, the write calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

Figure 29 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in Table 47.

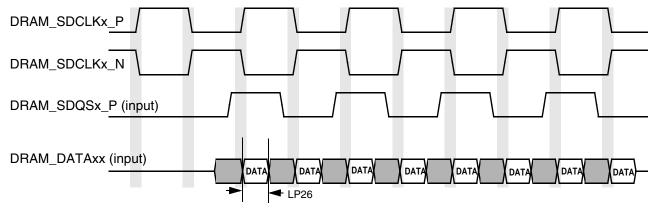


Figure 29. LPDDR2 Read Cycle

Table 47. LPDDR2 Read Cycle

ID	Parameter ^{1,2,3}	Symbol	CK = 40	Unit	
	i di dificici	Cymbol	Min	Max	Onit
LP26	Minimum required DRAM_DATAxx valid window width for LPDDR2		330		ps

¹ To receive the reported setup and hold values, read calibration must be performed to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window.

² All measurements are in reference to Vref level.

 3 Measurements were completed using balanced load and a 25 Ω resistor from outputs to DRAM_VREF.

4.10 General-Purpose Media Interface (GPMI) Timing

The i.MX 6DualPlus/6QuadPlus GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source Synchronous timing mode, and Samsung Toggle timing mode separately described in the following subsections.

4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)

Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 30 through Figure 33 depict the relative timing between GPMI signals at the module level for different operations under Asynchronous mode. Table 48 describes the timing parameters (NF1–NF17) that are shown in the figures.

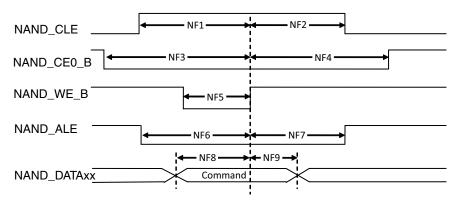


Figure 30. Command Latch Cycle Timing Diagram

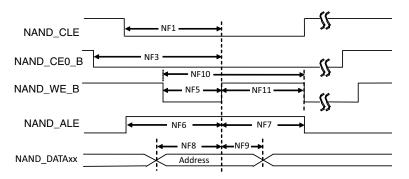
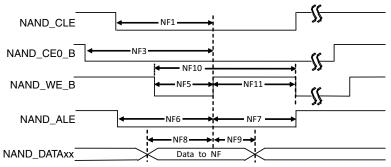



Figure 31. Address Latch Cycle Timing Diagram

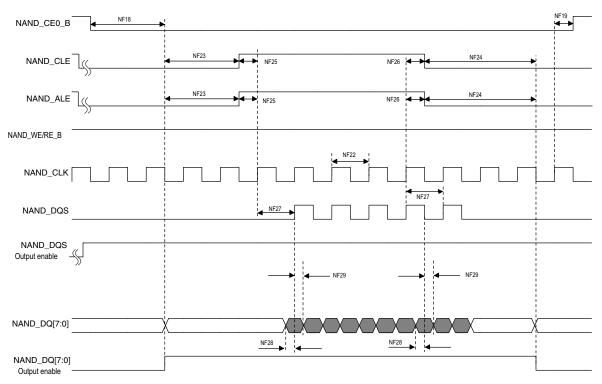
ID	Parameter	Symbol	Timing T = GPMI Clock Cycle		Unit
			Min	Мах	
NF16	Data setup on read	tDSR	_	(DS $\times\text{T}$ -0.67)/18.38 [see 5,6]	ns
NF17	Data hold on read	tDHR	0.82/11.83 [see ^{5,6}]	_	ns

Table 48. Asynchronous Mode Timing Parameters¹ (continued)

The GPMI asynchronous mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = GPMI clock period -0.075ns (half of maximum p-p jitter).


⁴ NF12 is met automatically by the design.

⁵ Non-EDO mode.

1

⁶ EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).

In EDO mode (Figure 34), NF16/NF17 are different from the definition in non-EDO mode (Figure 33). They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). The typical value of this control register is 0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

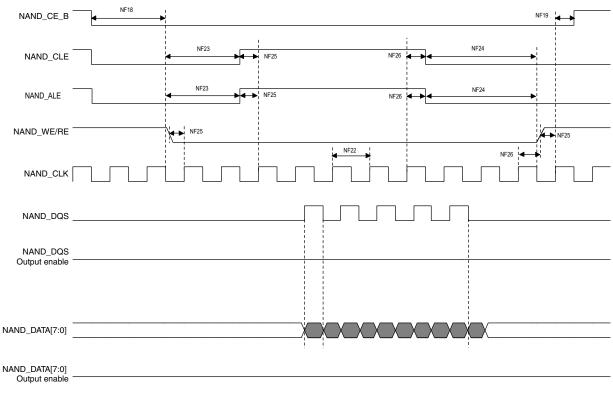


Figure 38. NAND_DQS/NAND_DQ Read Valid Window

ID	D Parameter		Timin T = GPMI Clo	Unit	
			Min	Max	
NF18	NAND_CEx_B access time	tCE	CE_DELAY × T - 0.79 [see ²]		ns
NF19	NAND_CEx_B hold time	tCH	0.5 × tCK - 0.6	63 [see ²]	ns
NF20	Command/address NAND_DATAxx setup time	tCAS	0.5 imes tCK ·	0.05	ns
NF21	Command/address NAND_DATAxx hold time	tCAH	0.5 × tCK - 1.23		ns
NF22	clock period	tCK	—		ns
NF23	preamble delay	tPRE	PRE_DELAY $ imes$ T - 0.29 [see ²]		ns
NF24	postamble delay	tPOST	$POST_DELAY \times T$	- 0.78 [see ²]	ns
NF25	NAND_CLE and NAND_ALE setup time	tCALS	0.5 imes tCK ·	0.86	ns
NF26	NAND_CLE and NAND_ALE hold time	tCALH	0.5 imes tCK ·	0.37	ns
NF27	NAND_CLK to first NAND_DQS latching transition	tDQSS	T - 0.41 [see ²]		ns
NF28	Data write setup	tDS	0.25 × tCK - 0.35		—
NF29	Data write hold		0.25 × tCK - 0.85		—
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ	— 2.06		—
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS	_	1.95	—

Table 49. Source Synchronous Mode Timing Parameters¹

¹ The GPMI source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.

² T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

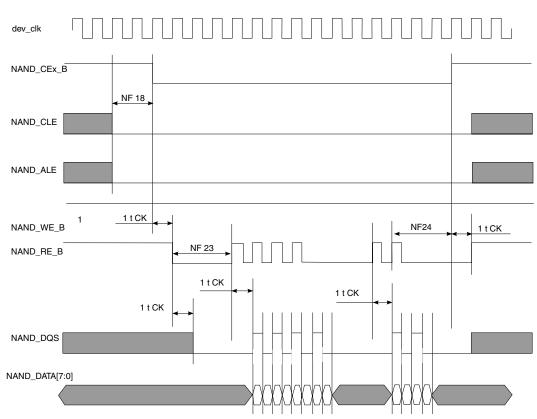


Figure 40. Samsung Toggle Mode Data Read Timing

Table 50. Samsung Toggle Mode Timing Parameters ¹								
ID	Parameter		Timing T = GPMI Clock C	Cycle	Unit			
			Min	Мах				
NF1	NAND_CLE setup time	tCLS	(AS + DS) × T - 0.12	[see ^{2,3}]	—			
NF2	NAND_CLE hold time	tCLH	DH × T - 0.72 [se	e ²]	—			
NF3	NAND_CEx_B setup time	tCS	(AS + DS) × T - 0.58	[see ^{3,2}]	—			
NF4	NAND_CEx_B hold time	tCH	DH × T - 1 [see	2]	—			
NF5	NAND_WE_B pulse width	tWP	DS × T [see ²]		—			
NF6	NAND_ALE setup time	tALS	(AS + DS) × T - 0.49	[see ^{3,2}]	—			
NF7	NAND_ALE hold time	tALH	DH × T - 0.42 [se	e ²]	—			
NF8	Command/address NAND_DATAxx setup time	tCAS	DS × T - 0.26 [se	e ²]	—			
NF9	Command/address NAND_DATAxx hold time	tCAH	DH × T - 1.37 [se	e ²]	—			
NF18	NAND_CEx_B access time	tCE	CE_DELAY × T [see ^{4,2}]	—	ns			
NF22	clock period	tCK	_	_	ns			
NF23	preamble delay	tPRE	PRE_DELAY × T [see ^{5,2}]	_	ns			
NF24	postamble delay	tPOST	POST_DELAY × T +0.43 [see ²]	_	ns			

ID	Parameter		Timing T = GPMI Clock C	Cycle	Unit
			Min	Max	
NF28	Data write setup	tDS ⁶	0.25 × tCK - 0.32	—	ns
NF29	Data write hold	tDH ⁶	0.25 × tCK - 0.79	—	ns
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ ⁷	—	3.18	—
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS ⁷	—	3.27	—

Table 50. Samsung Toggle Mode Timing Parameters¹ (continued)

¹ The GPMI toggle mode output timing can be controlled by the module's internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.

² AS minimum value can be 0, while DS/DH minimum value is 1.

³ T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

⁴ CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is met automatically by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level.

⁵ PRE_DELAY+1) \geq (AS+DS)

⁶ Shown in Figure 36.

⁷ Shown in Figure 37.

Figure 38 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For DDR Toggle mode, the typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

4.11 External Peripheral Interface Parameters

The following subsections provide information on external peripheral interfaces.

4.11.1 AUDMUX Timing Parameters

The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI electrical specifications found within this document.

4.11.2 ECSPI Timing Parameters

This section describes the timing parameters of the ECSPI block. The ECSPI has separate timing parameters for master and slave modes.

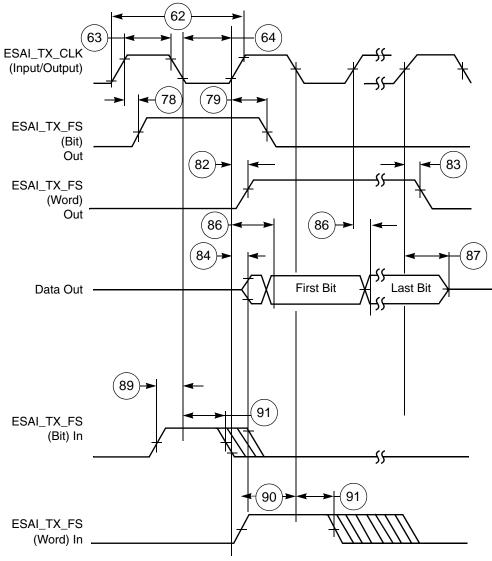
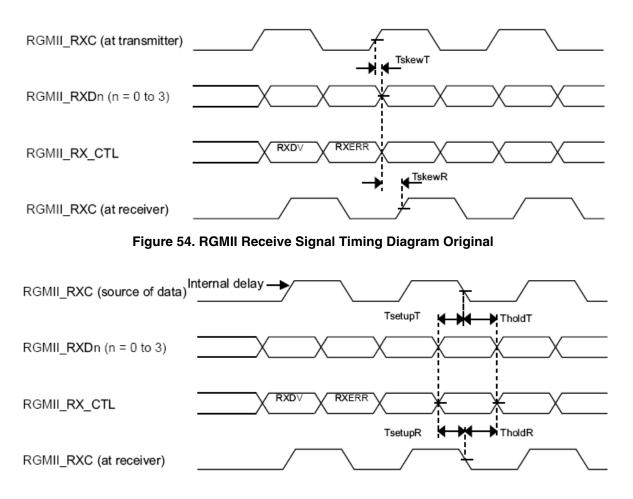



Figure 43. ESAI Transmitter Timing

4.11.6 Flexible Controller Area Network (FlexCAN) AC Electrical Specifications

The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.

4.11.7 HDMI Module Timing Parameters

4.11.7.1 Latencies and Timing Information

Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
R _T	Termination resistance	_	45	50	55	Ω
	Т	MDS drivers DC specifications				
V_{OFF}	Single-ended standby voltage	$RT = 50 \Omega$				mV
V _{SWING}	Single-ended output swing voltage	For measurement conditions and definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	_	600	mV
V _H	Single-ended output high voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddti	mds ±	10 mV	mV
	figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 200 mV	—	avddtmds + 10 mV	mV
VL	Single-ended output low voltage For definition, see the second	If attached sink supports TMDSCLK < or = 165 MHz	avddtmds – 600 mV	—	avddtmds - 400mV	mV
	figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 700 mV	—	avddtmds - 400 mV	mV
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.		50		200	Ω
		Hot plug detect specifications				
HPD ^{VH}	Hot plug detect high range	_	2.0		5.3	V
	Hot plug detect low range	_	0		0.8	V
HPD	Hot plug detect input impedance		10	_		kΩ
HPD t	Hot plug detect time delay	—	—	—	100	μs

Table 63. Electrical Characteristics (continued)

4.11.8 Switching Characteristics

Table 64 describes switching characteristics for the HDMI 3D Tx PHY. Figure 59 to Figure 63 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

Figure 71 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and DISP_CLK_UP parameters are register-controlled. Table 70 lists the synchronous display interface timing characteristics.

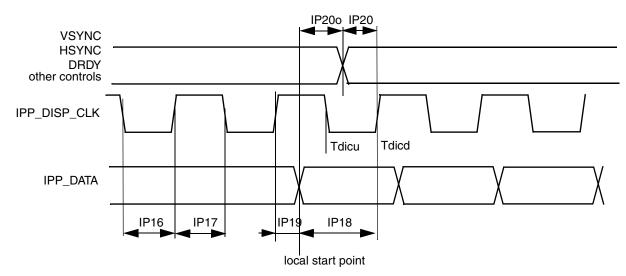


Figure 71. Synchronous Display Interface Timing Diagram—Access Level

ID	Parameter	Symbol	Min	Typ ¹	Мах	Unit
IP16	Display interface clock low time	Tckl	Tdicd-Tdicu-1.24	Tdicd ² -Tdicu ³	Tdicd-Tdicu+1.24	ns
IP17	Display interface clock high time	Tckh	Tdicp-Tdicd+Tdicu-1.24	Tdicp-Tdicd+Tdicu	Tdicp-Tdicd+Tdicu+1.2	ns
IP18	Data setup time	Tdsu	Tdicd-1.24	Tdicu	—	ns
IP19	Data holdup time	Tdhd	Tdicp-Tdicd-1.24	Tdicp-Tdicu	—	ns
IP20o	Control signals offset times (defined for each pin)	Tocsu	Tocsu-1.24	Tocsu	Tocsu+1.24	ns
IP20	Control signals setup time to display interface clock (defined for each pin)	Tcsu	Tdicd-1.24-Tocsu%Tdicp	Tdicu	_	ns

Table 70. Synchronous Display Interface Timing Characteristics (Access Level)

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

² Display interface clock down time

$$Tdicd = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_CLK_DOWN}{DI_CLK_PERIOD} \right] \right)$$

³ Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

$$Tdicu = \frac{1}{2} \left(T_{diclk} \times ceil \left[\frac{2 \times DISP_CLK_UP}{DI_CLK_PERIOD} \right] \right)$$

Table 77. MLB 256/512 Fs Timing Parameters (contin	ued)
--	------

Parameter	Symbol	Min	Мах	Unit	Comment
Bus Hold from MLB_CLK low	t _{mdzh}	4	—	ns	—
Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high)	Tdelay	_	10.75	_	ns

¹ The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK.

² MLB_CLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed in Table 78; unless otherwise noted.

Parameter	Symbol	Min	Мах	Unit	Comment
MLB_CLK Operating Frequency ¹	f _{mck}	45.056	51.2	MHz	1024xfs at 44.0 kHz 1024xfs at 50.0 kHz
MLB_CLK rise time	t _{mckr}	—	1	ns	V _{IL} TO V _{IH}
MLB_CLK fall time	t _{mckf}	—	1	ns	V _{IH} TO V _{IL}
MLB_CLK low time	t _{mckl}	6.1	—	ns	(see ²)
MLB_CLK high time	t _{mckh}	9.3	—	ns	—
MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling	t _{dsmcf}	1	—	ns	_
MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low	t _{dhmcf}	t _{mdzh}	—	ns	_
MLB_SIG/MLB_DATA output high impedance from MLB_CLK low	t _{mcfdz}	0	t _{mckl}	ns	(see ³)
Bus Hold from MLB_CLK low	t _{mdzh}	2	—	ns	—
Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high)	Tdelay	_	6	ns	_

Table 78. MLB 1024 Fs Timing Parameters

¹ The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK.

² MLB_CLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Table 79 lists the MediaLB 6-pin interface timing characteristics, and Figure 88 shows the MLB 6-pin delay, setup, and hold times.

4.11.21.2 UART RS-232 Serial Mode Timing

The following sections describe the electrical information of the UART module in the RS-232 mode.

4.11.21.2.1 UART Transmitter

Figure 100 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit format. Table 91 lists the UART RS-232 serial mode transmit timing characteristics.

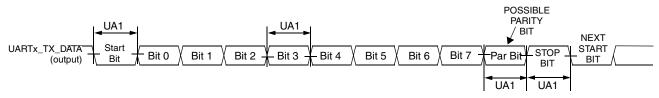


Figure 100. UART RS-232 Serial Mode Transmit Timing Diagram

Table 91. RS-232 Serial Mode Transmit Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA1	Transmit Bit Time	t _{Tbit}	$1/F_{baud_rate}^1 - T_{ref_clk}^2$	1/F _{baud_rate} + T _{ref_clk}	—

¹ F_{baud_rate} : Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

² T_{ref clk}: The period of UART reference clock *ref_clk* (*ipg_perclk* after RFDIV divider).

4.11.21.2.2 UART Receiver

Figure 101 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 92 lists serial mode receive timing characteristics.

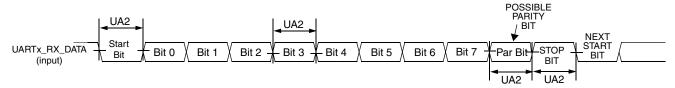


Figure 101. UART RS-232 Serial Mode Receive Timing Diagram

 Table 92.
 RS-232 Serial Mode Receive Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit
UA2	Receive Bit Time ¹	t _{Rbit}	1/F _{baud_rate} ² − 1/(16 × F _{baud_rate})	1/F _{baud_rate} + 1/(16 × F _{baud_rate})	—

The UART receiver can tolerate $1/(16 \times F_{baud_rate})$ tolerance in each bit. But accumulation tolerance in one frame must not exceed $3/(16 \times F_{baud_rate})$.

² F_{baud rate}: Baud rate frequency. The maximum baud rate the UART can support is (*ipg_perclk* frequency)/16.

4.11.22 USB HSIC Timings

This section describes the electrical information of the USB HSIC port.

NOTE

HSIC is a DDR signal. The following timing specification is for both rising and falling edges.

4.11.22.1 Transmit Timing

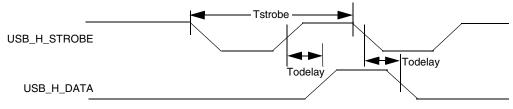


Figure 104. USB HSIC Transmit Waveform

Table 95. USB HSIC Transmit Parameters

Name	Parameter	Min	Max	Unit	Comment	
Tstrobe	strobe period	4.166	4.167	ns	_	
Todelay	data output delay time	550	1350	ps	Measured at 50% point	
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points	

4.11.22.2 Receive Timing

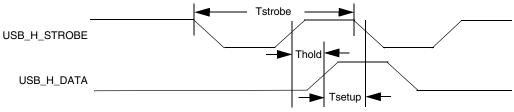


Figure 105. USB HSIC Receive Waveform

Table 96. USB HSIC Receive Parameters¹

Name	Parameter	Min	Max	Unit	Comment	
Tstrobe	strobe period	4.166	4.167	ns	_	
Thold	data hold time	300	_	ps	Measured at 50% point	
Tsetup	data setup time	365	—	ps	Measured at 50% point	
Tslew	strobe/data rising/falling time	0.7	2	V/ns	Averaged from 30% – 70% points	

¹ The timings in the table are guaranteed when:

-AC I/O voltage is between 0.9x to 1x of the I/O supply

-DDR_SEL configuration bits of the I/O are set to (10)b

Package Information and Contact Assignments

		Power Group	Ball Type	Out of Reset Condition ¹				
Ball Name	Ball			Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²	
DRAM_SDBA1	Y15	NVCC_DRAM	DDR	ALT0	DRAM_SDBA1	Output	0	
DRAM_SDBA2	AB12	NVCC_DRAM	DDR	ALT0	DRAM_SDBA2	Output	0	
DRAM_SDCKE0	Y11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE0	Output	0	
DRAM_SDCKE1	AA11	NVCC_DRAM	DDR	ALT0	DRAM_SDCKE1	Output	0	
DRAM_SDCLK_0	AD15	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK0_P	Input	Hi-Z	
DRAM_SDCLK_0_B	AE15	NVCC_DRAM	DDRCLK	—	DRAM_SDCLK0_N	—	_	
DRAM_SDCLK_1	AD14	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDCLK1_P	Input	Hi-Z	
DRAM_SDCLK_1_B	AE14	NVCC_DRAM	DDRCLK	_	DRAM_SDCLK1_N	- 1		
DRAM_SDODT0	AC16	NVCC_DRAM	DDR	ALT0	DRAM_ODT0	Output	0	
DRAM_SDODT1	AB17	NVCC_DRAM	DDR	ALT0	DRAM_ODT1	Output	0	
DRAM_SDQS0	AE3	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS0_P	Input	Hi-Z	
DRAM_SDQS0_B	AD3	NVCC_DRAM	DDRCLK	_	DRAM_SDQS0_N			
DRAM_SDQS1	AD6	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS1_P	Input	Hi-Z	
DRAM_SDQS1_B	AE6	NVCC_DRAM	DDRCLK	_	DRAM_SDQS1_N			
DRAM_SDQS2	AD8	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS2_P	Input	Hi-Z	
DRAM_SDQS2_B	AE8	NVCC_DRAM	DDRCLK	_	DRAM_SDQS2_N			
DRAM_SDQS3	AC10	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS3_P	Input	Hi-Z	
DRAM_SDQS3_B	AB10	NVCC_DRAM	DDRCLK	_	DRAM_SDQS3_N	- 1		
DRAM_SDQS4	AD18	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS4_P	Input	Hi-Z	
DRAM_SDQS4_B	AE18	NVCC_DRAM	DDRCLK	_	DRAM_SDQS4_N	- 1		
DRAM_SDQS5	AD20	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS5_P	Input	Hi-Z	
DRAM_SDQS5_B	AE20	NVCC_DRAM	DDRCLK	_	DRAM_SDQS5_N	- 1		
DRAM_SDQS6	AD23	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS6_P	Input	Hi-Z	
DRAM_SDQS6_B	AE23	NVCC_DRAM	DDRCLK	_	DRAM_SDQS6_N	- 1		
DRAM_SDQS7	AA25	NVCC_DRAM	DDRCLK	ALT0	DRAM_SDQS7_P	Input	Hi-Z	
DRAM_SDQS7_B	AA24	NVCC_DRAM	DDRCLK	_	DRAM_SDQS7_N	- 1		
DRAM_SDWE	AB16	NVCC_DRAM	DDR	ALT0	DRAM_SDWE_B	Output	0	
DSI_CLK0M	H3	NVCC_MIPI	—	—	DSI_CLK_N	—	_	
DSI_CLK0P	H4	NVCC_MIPI	—	—	DSI_CLK_P	—	_	
DSI_D0M	G2	NVCC_MIPI	—		DSI_DATA0_N	—		
DSI_D0P	G1	NVCC_MIPI		_	DSI_DATA0_P	_		
DSI_D1M	H2	NVCC_MIPI	—		DSI_DATA1_N	_		
DSI_D1P	H1	NVCC_MIPI	—		DSI_DATA1_P	_		
EIM_A16	H25	NVCC_EIM1	GPIO	ALT0	EIM_ADDR16	Output	0	
EIM_A17	G24	NVCC_EIM1	GPIO	ALT0	EIM_ADDR17	Output	0	
EIM_A18	J22	NVCC_EIM1	GPIO	ALT0	EIM_ADDR18	Output	0	

Table 100. 21 x 21 mm Functional Contact Assignments (continued)