

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
	00501616
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	166.67MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, WDT
Number of I/O	50
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BQFP
Supplier Device Package	160-QFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf5208cab166

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF5207/8 Device Configurations

1 MCF5207/8 Device Configurations

The following table compares the two devices described in this document:

Table 1. MCF5207 & MCF5208 Configurations

Module	MCF5207	MCF5208
Version 2 ColdFire Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	٠
Core (System) Clock	up to 166	6.67 MHz
Peripheral and External Bus Clock (Core clock ÷ 2)	up to 83	.33 MHz
Performance (Dhrystone/2.1 MIPS)	up to	0 159
Instruction/Data Cache	8 Kb	oytes
Static RAM (SRAM)	16 K	bytes
SDR/DDR SDRAM Controller	•	•
Fast Ethernet Controller (FEC)	—	•
Low-Power Management Module	•	•
UARTs	3	3
I ² C	•	٠
QSPI	•	•
32-bit DMA Timers	4	4
Watchdog Timer (WDT)	•	•
Periodic Interrupt Timers (PIT)	4	4
Edge Port Module (EPORT)	•	•
Interrupt Controllers (INTC)	1	1
16-channel Direct Memory Access (DMA)	•	•
FlexBus External Interface	•	•
General Purpose I/O Module (GPIO)	•	•
JTAG - IEEE [®] 1149.1 Test Access Port	•	•
Package	144 LQFP 144 MAPBGA	160 QFP 196 MAPBGA

2 Ordering Information

Table 2. Orderable Part Numbers

Freescale Part Number	Description	Speed	Temperature
MCF5207CAG166	MCF5207 RISC Microprocessor, 144 LQFP	166.67 MHz	-40° to $+85^{\circ}$ C
MCF5207CVM166	MCF5207 RISC Microprocessor, 144 MAPBGA	166.67 MHz	-40° to $+85^{\circ}$ C
MCF5208CAB166	MCF5208 RISC Microprocessor, 160 QFP	166.67 MHz	-40° to $+85^{\circ}$ C
MCF5208CVM166	MCF5208 RISC Microprocessor, 196 MAPBGA	166.67 MHz	-40° to $+85^{\circ}$ C

3 Signal Descriptions

The following table lists all the MCF5208 pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Mechanicals and Pinouts" for package diagrams. For a more detailed discussion of the MCF5208 signals, consult the *MCF5208 Reference Manual* (MCF5208RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., A23), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO default to their GPIO functionality.

Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	Voltage Domain	MCF5207 144 LQFP	MCF5207 144 MAPBGA	MCF5208 160 QFP	MCF5208 196 MAPBGA	
Reset										
RESET ²	—	—	—	I	EVDD	82	J10	90	J14	
RSTOUT	_	—	—	0	EVDD	74	M12	82	N14	
Clock										
EXTAL	_	—	—	Ι	EVDD	78	K12	86	L14	
XTAL	—	—	—	0	EVDD	80	J12	88	K14	
FB_CLK	_	—	—	0	SDVDD	34	L1	40	N1	
	Mode Selection									
RCON ²	_	—	—	Ι	EVDD	144	C4	160	C3	
DRAMSEL	_	—	—	I	EVDD	79	H10	87	K11	
FlexBus										
A[23:22]	_	FB_CS[5:4]	—	0	SDVDD	118, 117	B9, A10	126, 125	B11, A11	
A[21:16]	_	_	_	0	SDVDD	116–114, 112, 108, 107	C9, A11, B10, A12, C11, B11	124, 123, 122, 120, 116, 115	B12, A12, A13, B13, B14, C13	
A[15:14]		SD_BA[1:0] ³	—	0	SDVDD	106, 105	B12, C12	114, 113	C14, D12	
A[13:11]	_	SD_A[13:11] ³	_	0	SDVDD	104–102	D11, E10, D12	112, 111, 110	D13, D14, E11	
A10	_	_	—	0	SDVDD	101	C10	109	E12	

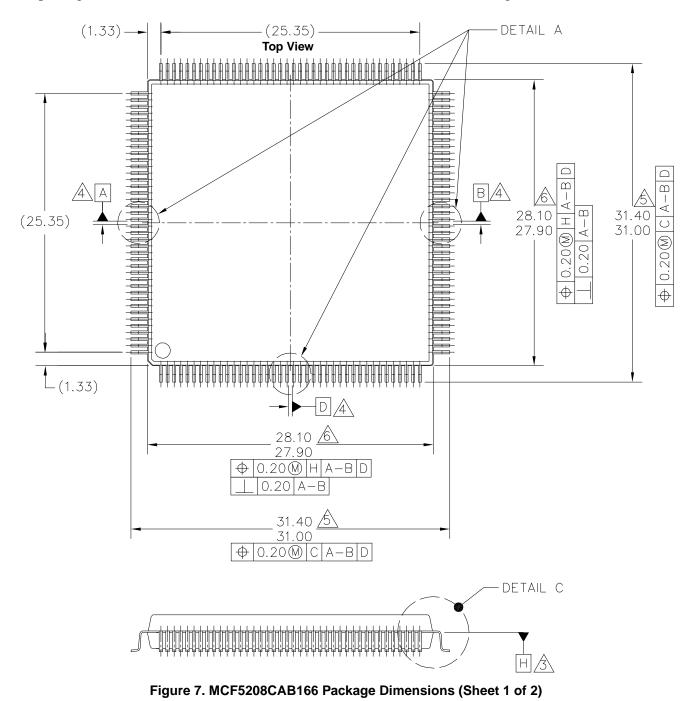
Table 3. MCF5207/8 Signal Information and Muxing

Signal Descriptions

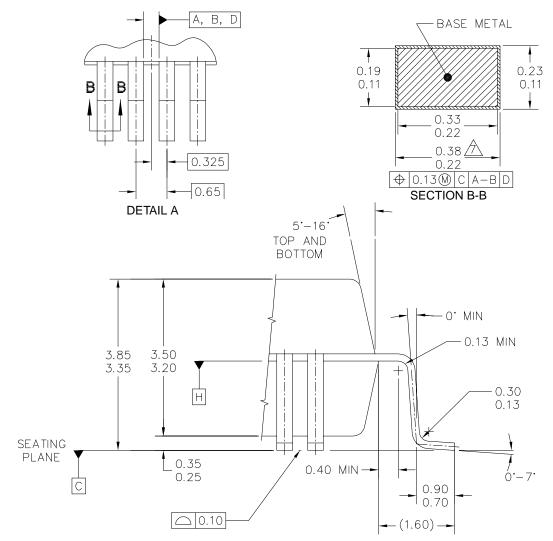
Signal Name	GPIO	Alternate 1	Alternate 2	Dir. ¹	Voltage Domain	MCF5207 144 LQFP	MCF5207 144 MAPBGA	MCF5208 160 QFP	MCF5208 196 MAPBGA
				QSP	I				1
QSPI_CS2	PQSPI3	DACK0	U2RTS	0	EVDD	126	A8	132	D10
QSPI_CLK	PQSPI0	I2C_SCL ²	-	0	EVDD	127	C7	133	A9
QSPI_DOUT	PQSPI1	I2C_SDA ²	—	0	EVDD	128	A7	134	B9
QSPI_DIN	PQSPI2	DREQ0 ²	U2CTS	I	EVDD	129	B7	135	C9
Note: The QSPI packages.	_CS1 and QSP	I_CS0 signals ar	e available on	the U	1CTS, U ⁻	1RTS, U0CTS	, or UORTS pir	ns for the 196	and 160-pin
				UART	s				
U1CTS	PUARTL7	DT1IN	QSPI_CS1	Ι	EVDD	—	—	136	D9
U1RTS	PUARTL6	DT1OUT	QSPI_CS1	0	EVDD		_	137	C8
U1TXD	PUARTL5	—	-	0	EVDD	131	A6	139	A8
U1RXD	PUARTL4	_	—	Ι	EVDD	130	D6	138	B8
UOCTS	PUARTL3	DT0IN	QSPI_CS0	Ι	EVDD	_	_	76	N12
UORTS	PUARTL2	DT0OUT	QSPI_CS0	0	EVDD		_	77	P12
U0TXD	PUARTL1	_	—	0	EVDD	71	L10	79	P13
U0RXD	PUARTL0	_	_	Ι	EVDD	70	M10	78	N13
Note: The UART UART1 control si	•	•			, FEC, ar	nd I2C pins. Fo	or the MCF520	7 devices, the	UART0 and
			DN	IA Tir	ners				
DT3IN	PTIMER3	DT3OUT	U2CTS	Ι	EVDD	135	B5	143	B7
DT2IN	PTIMER2	DT2OUT	U2RTS	Ι	EVDD	136	C5	144	A7
DT1IN	PTIMER1	DT1OUT	U2RXD	Ι	EVDD	137	A4	145	A6
DT0IN	PTIMER0	DT0OUT	U2TXD	Ι	EVDD	138	A3	146	B6
			B	DM/JT	AG ⁶				I
JTAG_EN ⁷	_	_	_	Ι	EVDD	83	J11	91	J13
DSCLK		TRST ²		Ι	EVDD	76	K11	84	L12
PSTCLK		TCLK ²		0	EVDD	64	M7	70	P9
BKPT	_	TMS ²	-	I	EVDD	75	L12	83	M14
DSI	—	TDI ²	-	I	EVDD	77	H9	85	K12
DSO	_	TDO	_	0	EVDD	69	M9	75	M12
DDATA[3:0]			-	0	EVDD	_	K9, L9, M11, M8		P11, N11, M11, P10
PST[3:0]	_	—	-	0	EVDD		L11, L8, K10, K8		N10, M10, L10, L9

4.3 Pinout—144 MAPBGA

The pinout of the MCF5207CVM166 device is shown below.


	1	2	3	4	5	6	7	8	9	10	11	12	_
A	SD_CS	U1RTS	DT0IN	DT1IN	ĪRQ7	U1TXD	QSPI_ DOUT	QSPI_CS2	FB_CS2	A22	A20	A18	A
В	D14	D15	TS	U1CTS	DT3IN	ĪRQ1	QSPI_ DIN	FB_CS0	A23	A19	A16	A15	В
С	D12	D13	SD_CKE	RCON	DT2IN	ĪRQ4	QSPI_ CLK	FB_CS1	A21	A10	A17	A14	с
D	D10	D11	SD_WE	IVDD	UORTS	U1RXD	FB_CS3	IVDD	A8	VSS	A13	A11	D
E	D8	D9	BE/BWE1	UOCTS	EVDD	EVDD	SD_VDD	SD_VDD	A4	A12	A9	A7	E
F	D31	D30	SD_DQS3	BE/BWE3	EVDD	VSS	VSS	SD_VDD	A0	A6	A5	A3	F
G	D29	D28	D26	D27	SD_VDD	VSS	VSS	EVDD	EVDD	A2	TA	A1	G
н	D25	D24	SD_SDR_ DQS	IVDD	SD_VDD	SD_VDD	EVDD	EVDD	TDI/DSI	DRAM SEL	IVDD	PLL_VDD	н
J	SD_CLK	SD_RAS	SD_VDD	D18	BE/BWE0	D4	D2	ŌĒ	IVDD	RESET	JTAG_EN	XTAL	J
к	SD_CLK	D20	D23	D16	D6	R/W	D0	PST0	DDATA3	PST1	TRST/ DSCLK	EXTAL	к
L	FB_CLK	D22	D21	BE/BWE2	D7	D5	D1	PST2	DDATA2	U0TXD	PST3	TMS/ BKPT	L
м	SD_A10	SD_CAS	D19	D17	SD_DQS2	D3	TCLK/ PSTCLK	DDATA0	TDO/DSO	U0RXD	DDATA1	RSTOUT	м
	1	2	3	4	5	6	7	8	9	10	11	12	-
			Figur	e 4. MCF	5207CV	M166 Pi	nout Top	view (1	44 MAPE	BGA)			

Mechanicals and Pinouts


4.6 Package Dimensions—160 QFP

The package dimensions of the MCF5208CAB166 device are shown in the figures below.

Mechanicals and Pinouts

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- A DATUM PLANE IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- A DATUMS TO BE DETERMINED AT DATUM PLANE H.
- A DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- <u>A</u> DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

Figure 8. MCF5208CAB166 Package Dimensions (Sheet 2 of 2)

Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T _{stg}	– 55 to 150	°C

Table 4. Absolute Maximum Ratings ^{1, 2} (continued)

NOTES:

Functional operating conditions are given in Section 5.4, "DC Electrical Specifications". Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or EV_{DD}).

³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁴ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.

⁵ Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$) is greater than I_{DD} , the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Ensure external EV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

5.2 Thermal Characteristics

Table 5 lists thermal resistance values

Characteristic			196MBGA	144MBGA	160QFP	144LQFP	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	47 ^{1,2}	47 ^{1,2}	49 ^{1,2}	65 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	43 ^{1,2}	43 ^{1,2}	44 ^{1,2}	58 ^{1,2}	°C/W
Junction to board		θ_{JB}	36 ³	36 ³	40 ³	50 ³	°C/W
Junction to case		θ_{JC}	22 ⁴	22 ⁴	39 ⁴	19 ⁴	°C/W
Junction to top of package		Ψ _{jt}	6 ^{1,5}	6 ^{1,5}	12 ^{1,6}	5 ^{1,7}	°C/W
Maximum operating junction temperature		Тj	105	105	105	105	°C

Table 5. Thermal Characteristics

NOTES:

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

² Per JEDEC JESD51-6 with the board horizontal.

Characteristic	Symbol	Min	Мах	Unit
Weak Internal Pull Up Device Current, tested at V_{IL} Max. ¹	I _{APU}	-10	- 130	μA
Input Capacitance ² All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

Table 7. DC Electrical	Specifications	(continued)
------------------------	----------------	-------------

NOTES:

¹ Refer to the signals section for pins having weak internal pull-up devices.

² This parameter is characterized before qualification rather than 100% tested.

5.4.1 PLL Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for PLL analog V_{DD} pins. The filter shown in Figure 11 should be connected between the board V_{DD} and the PLLV_{DD} pins. The resistor and capacitors should be placed as close to the dedicated PLLV_{DD} pin as possible.

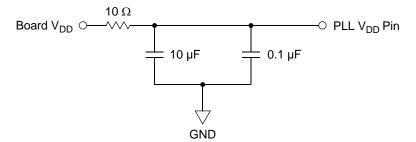
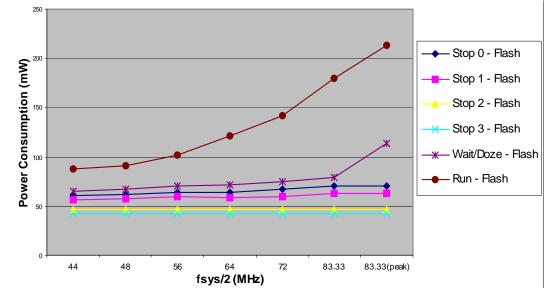


Figure 11. System PLL V_{DD} Power Filter

5.4.2 Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 3.3V) and EV_{DD} are specified relative to IV_{DD} .

5.4.2.1 Power Up Sequence


If EV_{DD}/SDV_{DD} are powered up with IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. IV_{DD} should not lead the EV_{DD} , SDV_{DD} , or $PLLV_{DD}$ by more than 0.4 V during power ramp-up or there will be high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on the internal ESD protection clamp diodes.

5.4.2.2 Power Down Sequence

If IV_{DD} /PLLV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and $PLLV_{DD}$ power down before EV_{DD} or SDV_{DD} must power down. IV_{DD} should not lag EV_{DD} , SDV_{DD} , or $PLLV_{DD}$ going low by more than

⁵ See the description of the low-power control register (LCPR) in the MCF5208 Reference Manual for more information on stop modes 0–3.

The figure below illustrates the power consumption in a graphical format.

f _{sys/2} Frequency	Voltage	Typical ² A	ctive (mA)	Peak ³ Active
sys/2 requency	(V)	SRAM	Flash	(mA)
	3.3	2.04	2.12	2.28
1 MHz	2.5	15.24	15.32	15.24
	1.5	1.30	1.41	1.49
	3.3	2.23	2.40	3.57
2 MHz	2.5	15.26	15.42	15.26
	1.5	1.71	1.92	2.09
	3.3	2.60	2.95	3.58
4 MHz	2.5	15.30	15.61	15.30
	1.5	2.49	2.95	3.29
	3.3	7.61	17.67	25.34
44 MHz	2.5	16.13	19.49	16.95
	1.5	24.04	28.72	39.02
	3.3	8.16	26.21	34.45
48 MHz	2.5	16.28	20.06	17.17
	1.5	26.05	31.13	42.30

Table 9. Typical Active Current Consumption Specifications¹

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}		1.5	pF
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}		1.5	pF
12	Crystal capacitive load	CL		See crystal spec	
13	Discrete load capacitance for XTAL	C _{L_XTAL}		2*C _L - C _{S_XTAL} - C _{PCB_XTAL} ⁷	pF
14	Discrete load capacitance for EXTAL	C _{L_EXTAL}		2*C _L - C _{S_EXTAL} - C _{PCB_EXTAL} ⁷	pF
17	CLKOUT Period Jitter, ^{3, 4, 7, 8, 9} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}	_	10 TBD	% f _{sys/2} % f _{sys/2}
18	Frequency Modulation Range Limit ^{3, 10, 11} (f _{sys} Max must not be exceeded)	C _{mod}	0.8	2.2	%f _{sys/2}
19	VCO Frequency. $f_{vco} = (f_{ref} * PFD)/4$	f _{vco}	350	540	MHz

Table 10. PLL Electrical Characteristics (continued)

NOTES:

The maximum allowable input clock frequency when booting with the PLL enabled is 24 MHz. For higher input clock

frequencies, the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.

² All internal registers retain data at 0 Hz.

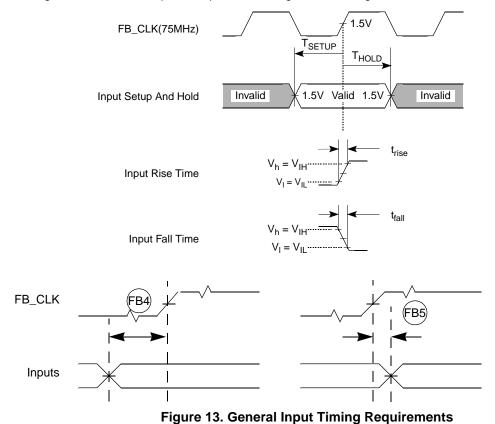
- ³ This parameter is guaranteed by characterization before qualification rather than 100% tested.
- ⁴ Proper PC board layout procedures must be followed to achieve specifications.
- ⁵ This parameter is guaranteed by design rather than 100% tested.
- ⁶ This specification is the PLL lock time only and does not include oscillator start-up time.
- ⁷ C_{PCB_EXTAL} and C_{PCB_XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
- ⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.
- ⁹ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.

¹⁰ Modulation percentage applies over an interval of 10µs, or equivalently the modulation rate is 100KHz.

¹¹ Modulation range determined by hardware design.

5.7 External Interface Timing Characteristics

Table 11 lists processor bus input timings.


NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.

All other timing relationships can be derived from these values. Timings listed in Table 11 are shown in Figure 14 and Figure 15.

* The timings are also valid for inputs sampled on the negative clock edge.

5.7.1 FlexBus

FlexBus is a multi-function external bus interface provided to interface to slave-only devices up to a maximum bus frequency of 83.33 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used. The FlexBus interface has six general purpose chip-selects ($\overline{FB}_CS[5:0]$) that can be configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select $\overline{FB}_CS[0]$ can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.

NP

Electrical Characteristics

- ⁷ This specification relates to the required hold time of today's DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
- ⁸ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁹ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

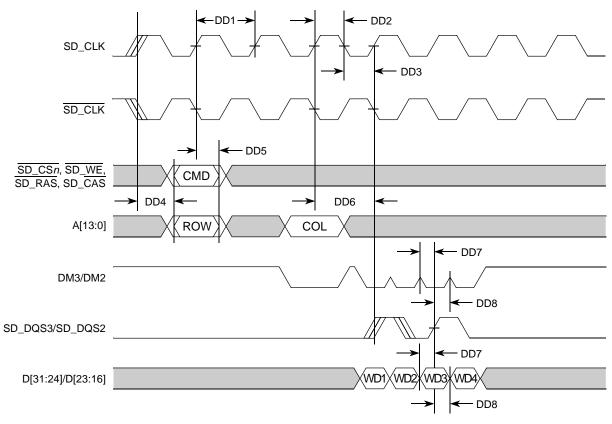


Figure 18. DDR Write Timing

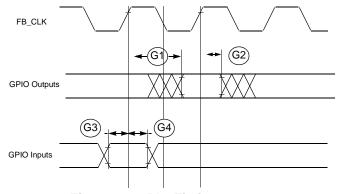


Figure 20. GPIO Timing

5.10 Reset and Configuration Override Timing

Num	Characteristic	Symbol	Min	Мах	Unit
R1	RESET Input valid to FB_CLK High	t _{RVCH}	9	—	ns
R2	FB_CLK High to RESET Input invalid	t _{CHRI}	1.5	—	ns
R3	RESET Input valid Time ¹	t _{RIVT}	5	—	t _{CYC}
R4	FB_CLK High to RSTOUT Valid	t _{CHROV}	_	10	ns
R5	RSTOUT valid to Config. Overrides valid	t _{ROVCV}	0	—	ns
R6	Configuration Override Setup Time to RSTOUT invalid	t _{cos}	20	—	t _{CYC}
R7	Configuration Override Hold Time after RSTOUT invalid	t _{СОН}	0	—	ns
R8	RSTOUT invalid to Configuration Override High Impedance	t _{ROICZ}		1	t _{CYC}

Table 15. Reset and Configuration Override Timing

NOTES:

During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

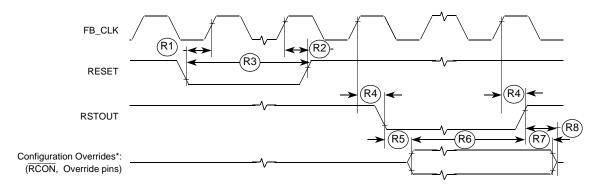


Figure 21. RESET and Configuration Override Timing

NOTE

Refer to the MCF5208 Reference Manual for more information.

5.11 I²C Input/Output Timing Specifications

Table 16 and Table 17 list specifications for the I²C input and output timing parameters.

Table 16. I²C Input Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Unit
l1	Start condition hold time	2	—	t _{cyc}
12	Clock low period	8	—	t _{cyc}
13	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	ms
14	Data hold time	0	—	ns
15	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	1	ms
16	Clock high time	4	—	t _{cyc}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	_	t _{cyc}
19	Stop condition setup time	2	—	t _{cyc}

Table 17. I²C Output Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Unit
11 ¹	Start condition hold time	6		t _{cyc}
l2 ^{1.}	Clock low period	10	_	t _{cyc}
13 ²	I2C_SCL/I2C_SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	_	μs
14 ^{1.}	Data hold time	7	_	t _{cyc}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	_	3	ns
16 ^{1.}	Clock high time	10	_	t _{cyc}
17 ^{1.}	Data setup time	2	_	t _{cyc}
18 ^{1.}	Start condition setup time (for repeated start condition only)	20		t _{cyc}
19 ^{1.}	Stop condition setup time	10	_	t _{cyc}

NOTES:

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table A-16. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table A-16 are minimum values.

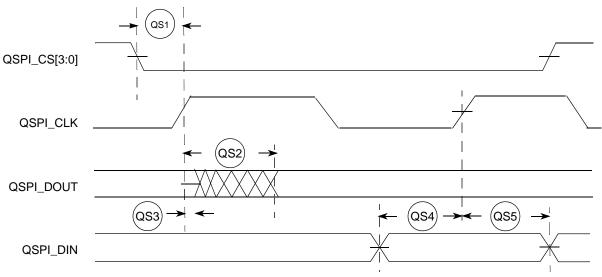
² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

5.13 32-Bit Timer Module AC Timing Specifications

Table 22 lists timer module AC timings.

Table 22. Timer Module AC Timing Specifications


Name	Characteristic			Unit
Name	onaracteristic	Min	Max	onit
T1	DT0IN / DT1IN / DT2IN / DT3IN cycle time	3	_	t _{CYC}
T2	DT0IN / DT1IN / DT2IN / DT3IN pulse width	1	—	t _{CYC}

5.14 **QSPI Electrical Specifications**

Table 23 lists QSPI timings.

Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	tcyc
QS2	QSPI_CLK high to QSPI_DOUT valid.	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid. (Output hold)	1.5	—	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	—	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9	—	ns

The values in Table 23 correspond to Figure 27.

Figure 27. QSPI Timing

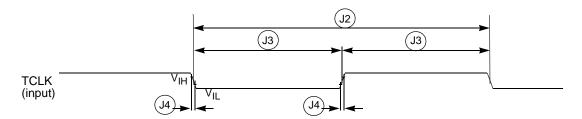
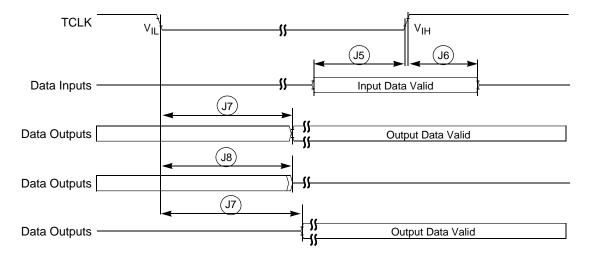
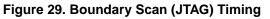
5.15 JTAG and Boundary Scan Timing

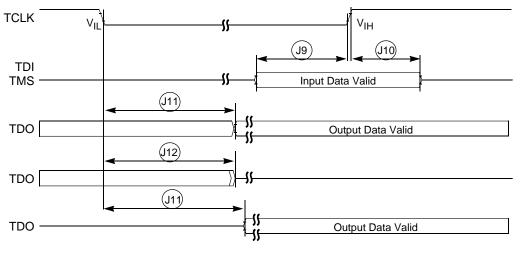
Table 24. JTAG and Boundary Scan Timing

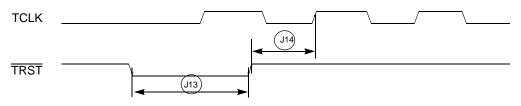
Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK Frequency of Operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK Cycle Period	t _{JCYC}	4	_	t _{CYC}
J3	TCLK Clock Pulse Width	t _{JCW}	26	_	ns
J4	TCLK Rise and Fall Times	t _{JCRF}	0	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	t _{BSDST}	4	_	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise	t _{BSDHT}	26	_	ns
J7	TCLK Low to Boundary Scan Output Data Valid	t _{BSDV}	0	33	ns
J8	TCLK Low to Boundary Scan Output High Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	t _{TAPBHT}	10	—	ns
J11	TCLK Low to TDO Data Valid	t _{TDODV}	0	26	ns
J12	TCLK Low to TDO High Z	t _{TDODZ}	0	8	ns
J13	TRST Assert Time	t _{TRSTAT}	100	—	ns
J14	TRST Setup Time (Negation) to TCLK High	t _{TRSTST}	10	_	ns

NOTES:

JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.


Figure 28. Test Clock Input Timing



5.16 Debug AC Timing Specifications

Table 25 lists specifications for the debug AC timing parameters shown in Figure 32.

Table 25.	Debug	AC Timing	Specification
-----------	-------	------------------	---------------

Num	Characteristic	Min	Max	Unit
D0	PSTCLK cycle time	1	1	t _{SYS}
D1	PSTCLK rising to PSTDDATA valid		3.0	ns
D2	PSTCLK rising to PSTDDATA invalid	1.5	_	ns
D3	DSI-to-DSCLK setup	1	_	PSTCLK
D4 ¹	DSCLK-to-DSO hold	4	_	PSTCLK
D5	DSCLK cycle time	5	_	PSTCLK
D6	BKPT assertion time	1	—	PSTCLK

NOTES:

DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

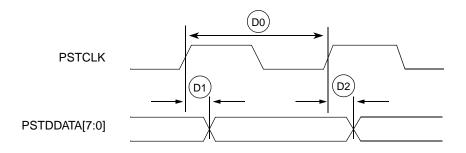


Figure 32. Real-Time Trace AC Timing

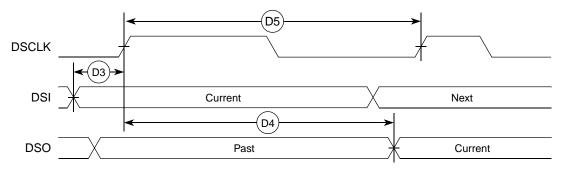


Figure 33. BDM Serial Port AC Timing

Revision History

Revision Number	Date	Substantive Changes
0.4	10/10/2005	 Figure 1 and Table 3: Changed pin 33 from EVDD to SD_VDD Figure 4 and Table 3: Changed ball D10 from TEST to VSS Figure 6 and Table 3: Changed pin 39 from EVDD to SD_VDD and pin 117 from TEST to VSS
0.5	3/29/2006	 Added "top view" and "bottom view" labels where appropriate to mechanical drawings and pinouts. Updated mechanical drawings to latest available, and added note to Section 4, "Mechanicals and Pinouts."
0.6	7/21/2006	 Corrected cross-reference to Figure 9 in Section 4.7, "Pinout—196 MAPBGA." Corrected L3 label in Figure 9 from SD_DR_DQS to SD_SDR_DQS. Corrected L6 label in Figure 9 from SD_DQS0 to SD_DQS2 and H3 from SD_DQS1 to SD_DQS3. Removed second sentence from Section 5.12.2, "MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK)," regarding no minimum frequency requirement for TXCLK. Removed third and fourth paragraphs from Section 5.12.2, "MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXEN, FEC_TXER, FEC_TXCLK)," as this feature is not supported on this device.
1	3/28/2007	 Removed preliminary designation from Section 5, "Electrical Characteristics." Updated Section 5.2, "Thermal Characteristics." Updated Section 5.4, "DC Electrical Specifications." Added Section 5.5, "Current Consumption." Updated Section 5.6, "Oscillator and PLL Electrical Characteristics." Made some corrections to the drawings in Section 5.8, "SDRAM Bus." Edited for grammar, punctuation, spelling, style, and format JD
2	12/4/2008	 Updated FlexBus read and write timing diagrams in Figure 14 and Figure 15. Changed the following specs in Table 12 and Table 13: Minimum frequency of operation from TBD to 60MHz Maximum clock period from TBD to 16.67 ns
3	9/1/2009	Changed doc type from Advance Information to Technical Data

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2009. All rights reserved.

MCF5208EC Rev. 3 9/2009